scholarly journals The genome variation and developmental transcriptome maps reveal genetic differentiation of skeletal muscle in pigs

PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009910
Author(s):  
Yalan Yang ◽  
Junyu Yan ◽  
Xinhao Fan ◽  
Jiaxing Chen ◽  
Zishuai Wang ◽  
...  

Natural and artificial directional selections have resulted in significantly genetic and phenotypic differences across breeds in domestic animals. However, the molecular regulation of skeletal muscle diversity remains largely unknown. Here, we conducted transcriptome profiling of skeletal muscle across 27 time points, and performed whole-genome re-sequencing in Landrace (lean-type) and Tongcheng (obese-type) pigs. The transcription activity decreased with development, and the high-resolution transcriptome precisely captured the characterizations of skeletal muscle with distinct biological events in four developmental phases: Embryonic, Fetal, Neonatal, and Adult. A divergence in the developmental timing and asynchronous development between the two breeds was observed; Landrace showed a developmental lag and stronger abilities of myoblast proliferation and cell migration, whereas Tongcheng had higher ATP synthase activity in postnatal periods. The miR-24-3p driven network targeting insulin signaling pathway regulated glucose metabolism. Notably, integrated analysis suggested SATB2 and XLOC_036765 contributed to skeletal muscle diversity via regulating the myoblast migration and proliferation, respectively. Overall, our results provide insights into the molecular regulation of skeletal muscle development and diversity in mammals.

2020 ◽  
Author(s):  
Tianpei Shi ◽  
Xinyue WANG ◽  
Zhida ZHAO ◽  
Wenping HU ◽  
Li ZHANG

Abstract Background: The embryo stage is a key period for sheep skeletal muscle growth and development. Proliferation, differentiation, and hypertrophy of fibers affect muscle growth potential directly. Analyzing transcriptome data is of great significance for revealing important time nodes of fetus muscle development and screening related regulation factors. Muscle development is a complex biological process, including a intricate network of multiple factor interactions. Among them, non-coding RNA, especially miRNA-mediated regulation, plays a fine regulatory role. The purpose of this study was to investigate the important genes and transcripts involved in the genetic mechanism of embryos skeletal muscle development in late pregnancy. Results: Herein we did a small RNA sequencing(RNA-Seq) of embryo at 85 days (D85N), 105 days (D105N) and 135 days(D135N), then performed bioinformatic analysis in order to identify the miRNA-mediated co-expression networks. Our findings identified 505 DE-miRNAs. Integrating the current miRNA data and the previously obtained lncRNA data, multiple networks were constructed, including miRNA-mRNA, miRNA-target gene(TG)-pathway, lncRNA-miRNA-mRNA, and miRNA-TG-transcription factor (TF) network. The results showed that the miRNA-mRNA network and lncRNA-miRNA-mRNA network identified three important lncRNAs (MSTRG.3533, MSTRG.4324, and MSTRG.1470) and three miRNAs(miR-493-3p, miR-3959-3p and miR-410-5p). The four genes ( TEAD1 , ZBTB34 , GSK3B, and POGLUT1 ) and three transcription factors (C / EBPbeta, TFIID, and PR B) play a key regulatory role in the miRNA-TG-TF network. Notably, a similar trend of gene expression was reported by RT-qPCR for RNA-seq data. Conclusions: This study identified three miRNAs, three lncRNAs, four genes, and three transcription factors, and revealed their crucial role in fetal fibrogenesis and lipid metabolism. It also shows that D105N is a pivotal turning point from myotube differentiation to fiber hypertrophy. These findings provide valuable references for network interaction patterns, which helps to evaluate the biological significance of skeletal muscle in the late development stage.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1787
Author(s):  
Tao Zhang ◽  
Can Chen ◽  
Shushu Han ◽  
Lan Chen ◽  
Hao Ding ◽  
...  

Growing evidence has demonstrated the emerging role of long non-coding RNA as competitive endogenous RNA (ceRNA) in regulating skeletal muscle development. However, the mechanism of ceRNA regulated by lncRNA in pigeon skeletal muscle development remains unclear. To reveal the function and regulatory mechanisms of lncRNA, we first analyzed the expression profiles of lncRNA, microRNA (miRNA), and mRNA during the development of pigeon skeletal muscle using high-throughput sequencing. We then constructed a lncRNA–miRNA–mRNA ceRNA network based on differentially expressed (DE) lncRNAs, miRNAs, and mRNAs according to the ceRNA hypothesis. Functional enrichment and short time-series expression miner (STEM) analysis were performed to explore the function of the ceRNA network. Hub lncRNA–miRNA–mRNA interactions were identified by connectivity degree and validated using dual-luciferase activity assay. The results showed that a total of 1625 DE lncRNAs, 11,311 DE mRNAs, and 573 DE miRNAs were identified. A ceRNA network containing 9120 lncRNA–miRNA–mRNA interactions was constructed. STEM analysis indicated that the function of the lncRNA-associated ceRNA network might be developmental specific. Functional enrichment analysis identified potential pathways regulating pigeon skeletal muscle development, such as cell cycle and MAPK signaling. Based on the connectivity degree, lncRNAs TCONS_00066712, TCONS_00026594, TCONS_00001557, TCONS_00001553, and TCONS_00003307 were identified as hub genes in the ceRNA network. lncRNA TCONS_00026594 might regulate the FSHD region gene 1 (FRG1)/ SRC proto-oncogene, non-receptor tyrosine kinase (SRC) by sponge adsorption of cli-miR-1a-3p to affect the development of pigeon skeletal muscle. Our findings provide a data basis for in-depth elucidation of the lncRNA-associated ceRNA mechanism underlying pigeon skeletal muscle development.


2019 ◽  
Author(s):  
Xinxin Zhang ◽  
Yilong Yao ◽  
Jinghua Han ◽  
Yalan Yang ◽  
Yun Chen ◽  
...  

AbstractBackgroundN6-methyladenosine (m6A) is the most abundant RNA modification and essentially participates in the regulation of skeletal muscle development. However, the status and function of m6A methylation in prenatal myogenesis remains unclear now.ResultsIn our present study, we first demonstrate that chemical suppression of m6A and knockdown METTL14 significantly inhibit the differentiation and promote the proliferation of C2C12 myoblast cells. The mRNA expression of m6A reader protein IGF2BP1, which functions to promote the stability of target mRNA, continually decreases during the prenatal skeletal muscle development. Thereafter, profiling transcriptome-wide m6A for six developmental stage of prenatal skeletal muscle, which spanning two important waves of pig myogenesis, were performed using a refined MeRIP sequencing technology that is optimal for small-amount of RNA samples. Highly dynamic m6A methylomes across different development stages were then revealed, with majority of the affected genes enriched in pathways of skeletal muscle development. In association with the transcriptome-wide alterations, transcriptional regulatory factors (MyoD) and differentiated markers (MyHC, MYH1) of muscle development are simultaneously regulated with m6A and IGF2BP1. Knockdown of IGF2BP1 also suppresses myotube formation and promotes cell proliferation.ConclusionsThe present study clarifies the dynamics of RNA m6A methylation in the regulation of prenatal skeletal muscle development, providing a data baseline for future developmental as well as biomedical studies of m6A functions in muscle development and disease.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 835
Author(s):  
Mohammadreza Mohammadabadi ◽  
Farhad Bordbar ◽  
Just Jensen ◽  
Min Du ◽  
Wei Guo

Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.


Gene ◽  
2021 ◽  
Vol 783 ◽  
pp. 145562
Author(s):  
Huadong Yin ◽  
Shunshun Han ◽  
Can Cui ◽  
Yan Wang ◽  
Diyan Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document