scholarly journals Microsatellite based molecular epidemiology of Leishmania infantum from re-emerging foci of visceral leishmaniasis in Armenia and pilot risk assessment by ecological niche modeling

2021 ◽  
Vol 15 (4) ◽  
pp. e0009288
Author(s):  
Katrin Kuhls ◽  
Olga Moskalenko ◽  
Anna Sukiasyan ◽  
Dezdemonia Manukyan ◽  
Gayane Melik-Andreasyan ◽  
...  

Background Visceral leishmaniasis (VL) is re-emerging in Armenia since 1999 with 167 cases recorded until 2019. The objectives of this study were (i) to determine for the first time the genetic diversity and population structure of the causative agent of VL in Armenia; (ii) to compare these genotypes with those from most endemic regions worldwide; (iii) to monitor the diversity of vectors in Armenia; (iv) to predict the distribution of the vectors and VL in time and space by ecological niche modeling. Methodology/Principal findings Human samples from different parts of Armenia previously identified by ITS-1-RFLP as L. infantum were studied by Multilocus Microsatellite Typing (MLMT). These data were combined with previously typed L. infantum strains from the main global endemic regions for population structure analysis. Within the 23 Armenian L. infantum strains 22 different genotypes were identified. The combined analysis revealed that all strains belong to the worldwide predominating MON1-population, however most closely related to a subpopulation from Southeastern Europe, Maghreb, Middle East and Central Asia. The three observed Armenian clusters grouped within this subpopulation with strains from Greece/Turkey, and from Central Asia, respectively. Ecological niche modeling based on VL cases and collected proven vectors (P. balcanicus, P. kandelakii) identified Yerevan and districts Lori, Tavush, Syunik, Armavir, Ararat bordering Georgia, Turkey, Iran and Azerbaijan as most suitable for the vectors and with the highest risk for VL transmission. Due to climate change the suitable habitat for VL transmission will expand in future all over Armenia. Conclusions Genetic diversity and population structure of the causative agent of VL in Armenia were addressed for the first time. Further genotyping studies should be performed with samples from infected humans, animals and sand flies from all active foci including the neighboring countries to understand transmission cycles, re-emergence, spread, and epidemiology of VL in Armenia and the entire Transcaucasus enabling epidemiological monitoring.

Check List ◽  
2015 ◽  
Vol 11 (2) ◽  
pp. 1566 ◽  
Author(s):  
Andrey José de Andrade ◽  
Rodrigo Gurgel-Gonçalves

The phlebotomine sand fly Pintomyia monticola (Costa Lima, 1932) is recorded for the first time in Brasília, central-west Brazil. A review of the geographical distribution of the species in South America is presented, and its distribution is extended. The potential geographical distribution of P. monticola is predicted based on ecological niche modeling. Ecological aspects of this species are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Wang ◽  
Chunyan Ma ◽  
Longling Ouyang ◽  
Wei Chen ◽  
Ming Zhao ◽  
...  

AbstractIn order to provide valuable guidelines for the conservation of germplasm of Lateolabrax maculatus, the genetic diversity and population structure analysis were evaluated for eight geographic populations along coastal regions of China, using 11 microsatellite DNA markers. The genetic parameters obtained showed that, eight populations can be clustered into two groups, the Northern group and the Southern group, concordant with their geographical positions. The UPGMA tree constructed according to the Nei’s genetic distance along with the structure analysis and discriminant analysis of principal component also supported this result. This might be explained by the geographic separation and the divergent environmental conditions among the populations. It's worth noting that, QD (Qingdao) population from northern area was assigned to the Southern group and showed a close genetic relationship and similar genetic constitution with the southern populations. We speculated that large scales of anthropogenic transportation of wild fries from QD populations to the southern aquaculture areas in history should be the primary cause. The populations from GY (Ganyu), RD (Rudong) and BH (Binhai) had higher genetic diversity and showed limited genetic exchange with other populations, indicating better conservation of the natural resources in these regions. All populations were indicated to have experienced bottleneck events in history.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Gabriel Parra-Henao ◽  
Laura C. Suárez-Escudero ◽  
Sebastián González-Caro

Ecological niche modeling of Triatominae bugs allow us to establish the local risk of transmission of the parasiteTrypanosoma cruzi,which causes Chagas disease.This information could help to guide health authority recommendations on infection monitoring, prevention, and control. In this study, we estimated the geographic distribution of triatomine species in Colombia and identified the relationship between landscape structure and climatic factors influencing their occurrence. A total of 2451 records of 4 triatomine species (Panstrongylus geniculatus,Rhodnius pallescens,R. prolixus, andTriatoma maculata) were analyzed.The variables that provided more information to explain the ecologic niche of these vectors were related to precipitation, altitude, and temperature. We found that the species with the broadest potential geographic distribution wereP. geniculatus,R. pallescens, andR. prolixus. In general, the models predicted the highest occurrence probability of these vectors in the eastern slope of the Eastern Cordillera, the southern region of the Magdalena valley, and the Sierra Nevada of Santa Marta.


Sign in / Sign up

Export Citation Format

Share Document