scholarly journals Dissection of the NKG2C NK cell response against Puumala Orthohantavirus

2021 ◽  
Vol 15 (12) ◽  
pp. e0010006
Author(s):  
Hannes Vietzen ◽  
Svenja Hartenberger ◽  
Stephan W. Aberle ◽  
Elisabeth Puchhammer-Stöckl

Background Infections with the Puumala orthohantavirus (PUUV) in humans may cause hemorrhagic fever with renal syndrome (HFRS), known as nephropathia epidemica (NE), which is associated with acute renal failure in severe cases. In response to PUUV-infections, a subset of potent antiviral NKG2C+ NK cells expand, whose role in virus defence and pathogenesis of NE is unclear. NKG2C+ NK cell proliferation is mediated by binding of NKG2C/CD94 to HLA-E on infected cells. The proliferation and activation of NKG2C+ NK cells via the NKG2C/HLA-E axis is affected by different NKG2C (NKG2Cwt/del) and HLA-E (HLA-E*0101/0103) alleles, which naturally occur in the human host. Homozygous (NKG2Cdel/del) and heterozygous (NKG2Cwt/del) deletions of the NKG2C receptor results in an impaired NKG2C/CD94 mediated proliferation and activation of NKG2C+ cells. We therefore analyzed the PUUV-mediated NKG2C+ NK cell responses and the impact of different NKG2C and HLA-E alleles in NE patients. Methodology/Principal findings NKG2C+ NK cell expansion and effector functions in PUUV-infected cells were investigated using flow cytometry and it was shown that PUUV-infected endothelial cells led to a NKG2C/CD94 mediated NKG2C+ NK cell activation and expansion, dependent on the HLA-G-mediated upregulation of HLA-E. Furthermore, the NKG2Cdel and HLA-E*0101/0103 alleles were determined in 130 NE patients and 130 matched controls, and it was shown that in NE patients the NKG2Cwt/del allele was significantly overrepresented, compared to the NKG2Cwt/wt variant (p = 0.01). In addition, in vitro analysis revealed that NKG2Cwt/del NK cells exhibited on overall a lower proliferation (p = 0.002) and lower IFNγ expression (p = 0.004) than NKG2Cwt/wt NK cells. Conclusions/Significance Our results corroborate the substantial impact of the NKG2C/HLA-E axis on PUUV-specific NK cell responses. A weak NKG2C+ NK cell response, as reflected by NKG2Cwt/del variant, may be associated with a higher risk for a severe hantavirus infections.

Author(s):  
Sonia Ghilas ◽  
Marc Ambrosini ◽  
Jean-Charles Cancel ◽  
Marion Massé ◽  
Hugues Lelouard ◽  
...  

SummaryA successful immune response relies on a tightly regulated delivery of the right signals to the right cells at the right time. Here we show that innate and innate-like lymphocytes use two mechanisms to orchestrate in time and space the functions of conventional type 1 dendritic cells (cDC1) in spleen. Early after murine cytomegalovirus infection, XCL1 production by lymphocytes with innate functions attracts red pulp cDC1 near IFN-γ-producing NK cells, generating superclusters around infected cells in the marginal zone. There, cDC1 and NK cells physically interact reinforcing their reciprocal activation. Targeted IL-12 delivery and IL-15/IL-15Rα transpresentation by cDC1 trigger NK cell activation and expansion. In return, activated NK cells deliver GM-CSF to cDC1, triggering their CCR7-dependent relocalization into the T cell zone. This NK cell-dependent licensing of cDC1 accelerates the priming of virus-specific CD8+ T cells. Our findings reveal a novel mechanism through which cDC1 bridge innate and adaptive immunity.


2021 ◽  
Vol 218 (5) ◽  
Author(s):  
Maria Ferez ◽  
Cory J. Knudson ◽  
Avital Lev ◽  
Eric B. Wong ◽  
Pedro Alves-Peixoto ◽  
...  

Natural killer (NK) cell activation depends on the signaling balance of activating and inhibitory receptors. CD94 forms inhibitory receptors with NKG2A and activating receptors with NKG2E or NKG2C. We previously demonstrated that CD94-NKG2 on NK cells and its ligand Qa-1b are important for the resistance of C57BL/6 mice to lethal ectromelia virus (ECTV) infection. We now show that NKG2C or NKG2E deficiency does not increase susceptibility to lethal ECTV infection, but overexpression of Qa-1b in infected cells does. We also demonstrate that Qa-1b is down-regulated in infected and up-regulated in bystander inflammatory monocytes and B cells. Moreover, NK cells activated by ECTV infection kill Qa-1b–deficient cells in vitro and in vivo. Thus, during viral infection, recognition of Qa-1b by activating CD94/NKG2 receptors is not critical. Instead, the levels of Qa-1b expression are down-regulated in infected cells but increased in some bystander immune cells to respectively promote or inhibit their killing by activated NK cells.


2019 ◽  
Vol 3 (6) ◽  
pp. 897-907 ◽  
Author(s):  
Martin Felices ◽  
Behiye Kodal ◽  
Peter Hinderlie ◽  
Michael F. Kaminski ◽  
Sarah Cooley ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is characterized by chronic clonal expansion of mature CD19-expressing B lymphocytes and global dysfunction of immune effectors, including natural killer (NK) cells. CLL remains incurable, and novel approaches to refractory CLL are needed. Our group has previously described trispecific killer engager (TriKE) molecules that redirect NK cell function against tumor cells. TriKE reagents simultaneously bind an activating receptor on NK cells, CD16, and a tumor antigen while also providing an NK cell expansion signal via an interleukin-15 moiety. Here we developed the novel CD19-targeting 161519 TriKE. We demonstrate that 161519 TriKE induced killing of a CD19-expressing Burkitt’s lymphoma cell line and examined the impact on primary CLL targets using healthy donor and patient NK cells. 161519 TriKE induced potent healthy donor NK cell activation, proliferation, and directed killing. Furthermore, 161519 TriKE rescued the inflammatory function of NK cells obtained from CLL patient peripheral blood samples. Finally, we show that 161519 TriKE induced better directed killing of CLL in vitro when compared with rituximab. In conclusion, 161519 TriKE drives a potent activating and proliferative signal on NK cells, resulting in enhanced NK cell expansion and CLL target killing. Our findings indicate the potential immunotherapeutic value of 161519 TriKE in CLL.


2021 ◽  
Author(s):  
Andrew E. Greenstein ◽  
Mouhammed Amir Habra ◽  
Subhagya A. Wadekar ◽  
Andreas Grauer

Elevated glucocorticoid (GC) activity may limit tumor immune response and immune checkpoint inhibitor (ICI) efficacy. Adrenocortical carcinoma (ACC) provides a unique test case to assess correlates of GC activity, as approximately half of ACC patients exhibit excess GC production (GC+). ACC multi-omics were analyzed to identify molecular consequences of GC+ and assess the rationale for combining the glucocorticoid receptor (GR) antagonist relacorilant with an ICI. GC status, mRNA expression, and DNA mutation and methylation data from 71 adrenal tumors were accessed via The Cancer Genome Atlas. Expression of 858 genes differed significantly between GC- and GC+ ACC cases. KEGG pathway analysis showed higher gene expression of 3 pathways involved in steroid synthesis and secretion in GC+ cases. Fifteen pathways, most related to NK cells and other immune activity, showed lower expression. Hypomethylation was primarily observed in the steroid synthesis pathways. Tumor-infiltrating CD4+ memory (P=.003), CD8+ memory (P=.001), and NKT-cells (P=.014) were depleted in GC+ cases; tumor-associated neutrophils were enriched (P=.001). Given the pronounced differences between GC+ and GC- ACC, the effects of cortisol on NK cells were assessed in vitro (NK cells from human PBMCs stimulated with IL-2 or IL-12/15). Cortisol suppressed, and relacorilant restored, NK cell activation, proliferation, and direct tumor cell killing. Thus, GR antagonism may increase the abundance and function of NK and other immune cells in the tumor microenvironment, promoting immune response in GC+ ACC and other malignancies with GC+. This hypothesis will be tested in a phase 1 trial of relacorilant + ICI.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3583
Author(s):  
Stefania Mantovani ◽  
Stefania Varchetta ◽  
Dalila Mele ◽  
Matteo Donadon ◽  
Guido Torzilli ◽  
...  

Natural killer (NK) cells play a pivotal role in cancer immune surveillance, and activating the receptor/ligand interaction may contribute to control the development and evolution of hepatocellular carcinoma (HCC). We investigated the role of the natural killer group 2 member D (NKG2D) activating receptor and its ligand, the major histocompatibility complex class I chain-related protein A and B (MICA/B) in patients with cirrhosis and HCC subjected to surgical resection, patients with cirrhosis and no HCC, and healthy donors (HD). The NKG2D-mediated function was determined in peripheral blood (PB), in tumor-infiltrating lymphocytes (NK-TIL), and in matched surrounding liver tissue (NK-LIL). A group of patients treated with sorafenib because of clinically advanced HCC was also studied. A humanized anti-MICA/B monoclonal antibody (mAb) was used in in vitro experiments to examine NK cell-mediated antibody-dependent cellular cytotoxicity. Serum concentrations of soluble MICA/B were evaluated by ELISA. IL-15 stimulation increased NKG2D-dependent activity which, however, remained dysfunctional in PB NK cells from HCC patients, in line with the reduced NKG2D expression on NK cells. NK-TIL showed a lower degranulation ability than NK-LIL, which was restored by IL-15 stimulation. Moreover, in vitro IL-15 stimulation enhanced degranulation and interferon-γ production by PB NK from patients at month one of treatment with sorafenib. Anti-MICA/B mAb associated with IL-15 was able to induce PB NK cytotoxicity for primary HCC cells in HD and patients with HCC, who also showed NK-TIL degranulation for autologous primary HCC cells. Our findings highlight the key role of the NKG2D-MICA/B axis in the regulation of NK cell responses in HCC and provide evidence in support of a potentially important role of anti-MICA/B mAb and IL-15 stimulation in HCC immunotherapy.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1975 ◽  
Author(s):  
Daria Bortolotti ◽  
Valentina Gentili ◽  
Sabrina Rizzo ◽  
Antonella Rotola ◽  
Roberta Rizzo

Natural killer cells are important in the control of viral infections. However, the role of NK cells during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has previously not been identified. Peripheral blood NK cells from SARS-CoV and SARS-CoV-2 naïve subjects were evaluated for their activation, degranulation, and interferon-gamma expression in the presence of SARS-CoV and SARS-CoV-2 spike proteins. K562 and lung epithelial cells were transfected with spike proteins and co-cultured with NK cells. The analysis was performed by flow cytometry and immune fluorescence. SARS-CoV and SARS-CoV-2 spike proteins did not alter NK cell activation in a K562 in vitro model. On the contrary, SARS-CoV-2 spike 1 protein (SP1) intracellular expression by lung epithelial cells resulted in NK cell-reduced degranulation. Further experiments revealed a concomitant induction of HLA-E expression on the surface of lung epithelial cells and the recognition of an SP1-derived HLA-E-binding peptide. Simultaneously, there was increased modulation of the inhibitory receptor NKG2A/CD94 on NK cells when SP1 was expressed in lung epithelial cells. We ruled out the GATA3 transcription factor as being responsible for HLA-E increased levels and HLA-E/NKG2A interaction as implicated in NK cell exhaustion. We show for the first time that NK cells are affected by SP1 expression in lung epithelial cells via HLA-E/NKG2A interaction. The resulting NK cells’ exhaustion might contribute to immunopathogenesis in SARS-CoV-2 infection.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 753 ◽  
Author(s):  
Loris Zamai ◽  
Genny Del Zotto ◽  
Flavia Buccella ◽  
Sara Gabrielli ◽  
Barbara Canonico ◽  
...  

The NK cell population is characterized by distinct NK cell subsets that respond differently to the various activating stimuli. For this reason, the determination of the optimal cytotoxic activation of the different NK cell subsets can be a crucial aspect to be exploited to counter cancer cells in oncologic patients. To evaluate how the triggering of different combination of activating receptors can affect the cytotoxic responses of different NK cell subsets, we developed a microbead-based degranulation assay. By using this new assay, we were able to detect CD107a+ degranulating NK cells even within the less cytotoxic subsets (i.e., resting CD56bright and unlicensed CD56dim NK cells), thus demonstrating its high sensitivity. Interestingly, signals delivered by the co-engagement of NKp46 with 2B4, but not with CD2 or DNAM-1, strongly cooperate to enhance degranulation on both licensed and unlicensed CD56dim NK cells. Of note, 2B4 is known to bind CD48 hematopoietic antigen, therefore this observation may provide the rationale why CD56dim subset expansion correlates with successful hematopoietic stem cell transplantation mediated by alloreactive NK cells against host T, DC and leukemic cells, while sparing host non-hematopoietic tissues and graft versus host disease. The assay further confirms that activation of LFA-1 on NK cells leads to their granule polarization, even if, in some cases, this also takes to an inhibition of NK cell degranulation, suggesting that LFA-1 engagement by ICAMs on target cells may differently affect NK cell response. Finally, we observed that NK cells undergo a time-dependent spontaneous (cytokine-independent) activation after blood withdrawal, an aspect that may strongly bias the evaluation of the resting NK cell response. Altogether our data may pave the way to develop new NK cell activation and expansion strategies that target the highly cytotoxic CD56dim NK cells and can be feasible and useful for cancer and viral infection treatment.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3595
Author(s):  
Léa Dubreuil ◽  
Bercelin Maniangou ◽  
Patrice Chevallier ◽  
Agnès Quéméner ◽  
Nolwenn Legrand ◽  
...  

We have recently shown a broad disparity of Natural Killer (NK) cell responses against leukemia highlighting good and bad responders resting on the Killer cell Immunoglobulin-like Receptors (KIR) and HLA genetics. In this study, we deeply studied KIR2D allele expression, HLA-C recognition and functional effect on NK cells in 108 blood donors in combining high-resolution KIR allele typing and multicolor flow cytometry. The KIR2DL1*003 allotype is associated with centromeric (cen) AA motif and confers the highest NK cell frequency, expression level and strength of KIR/HLA-C interactions compared to the KIR2DL1*002 and KIR2DL1*004 allotypes respectively associated with cenAB and BB motifs. KIR2DL2*001 and *003 allotypes negatively affect the frequency of KIR2DL1+ and KIR2DL3+ NK cells. Altogether, our data suggest that cenAA individuals display more efficient KIR2DL alleles (L1*003 and L3*001) to mount a consistent frequency of KIR2DL+ NK cells and to confer an effective NK cell responsiveness. The transposition of our in vitro observations in the T-replete haplo-identical HSCT context led us to observe that cenAA HSC grafts limit significantly the incidence of relapse in patients with myeloid diseases after T-replete haplo-identical HSCT. As NK cells are crucial in HSCT reconstitution, one could expect that the consideration of KIR2DL1/2/3 allelic polymorphism could help to refine scores used for HSC donor selection.


Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2252-2258 ◽  
Author(s):  
Thierry Walzer ◽  
Marc Dalod ◽  
Scott H. Robbins ◽  
Laurence Zitvogel ◽  
Eric Vivier

AbstractSeveral recent publications have focused on the newly described interactions between natural-killer (NK) cells and dendritic cells (DCs). Activated NK cells induce DC maturation either directly or in synergy with suboptimal levels of microbial signals. Immature DCs appear susceptible to autologous NK-cell-mediated cytolysis while mature DCs are protected. NK-cell-induced DC activation is dependent on both tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) secretion and a cell-cell contact involving NKp30. In vitro, interleukin-12 (IL-12)/IL-18, IL-15, and IFN-α/β production by activated DCs enhance, in turn, NK-cell IFN-γ production, proliferation, and cytotoxic potential, respectively. In vivo, NK-cell/DC interactions may occur in lymphoid organs as well as in nonlymphoid tissues, and their consequences are multiple. By inducing DC activation, NK-cell activation induced by tumor cells can indirectly promote antitumoral T-cell responses. Reciprocally, DCs activated through Toll-like receptors (TLRs) induce potent NK-cell activation in antiviral responses. Thus, DCs and NK cells are equipped with complementary sets of receptors that allow the recognition of various pathogenic agents, emphasizing the role of NK-cell/DC crosstalk in the coordination of innate and adaptive immune responses.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1310-1310
Author(s):  
Andreas Lundqvist ◽  
Leigh Samsel ◽  
Michael Eckhaus ◽  
Ramaprasad Srinivasan ◽  
Yoshiyuki Takahashi ◽  
...  

Abstract Retrospective data suggest NK cells play a role in protecting recipients from graft versus host disease (GVHD) in the setting of killer IgG-like receptor (KIR) ligand incompatibility. In humans, this protective effect is most evident with MHC mismatched transplantation, usually following in vivo or in vitro T-cell depletion. In MHC mismatched murine transplant models, lethal GVHD is reduced following the adoptive infusion of KIR ligand mismatched NK cells; it is unknown whether NK cells can mediate similar protective effects following MHC matched transplantation. Therefore, we investigated the impact of adoptively infusing KIR ligand mismatched NK cells on GVHD in an MHC matched T-cell replete murine model of allogeneic transplantation. Balb/C recipient mice underwent allogeneic bone marrow (8 x 106 cells) and splenocyte (15 x 106 cells) transplantation from B10.d2 donors following 950cGy of irradiation. Allogeneic B10.d2 donor NK cells were first isolated by negative depletion using magnetic beads selecting for CD4, CD5, CD8a, CD19, Gr-1 and Ter-119, and then expanded over 4-6 days in vitro in DMEM media containing 10% FCS and 500U/ml of IL-2. NK cell subsets (KIR ligand matched vs. KIR ligand mismatched) were then isolated by flow cytometry into Ly49I/C+ NK cells (KIR ligand mismatched in the GVHD direction for Balb/C recipients) and Ly49A/G+ NK cells (KIR ligand matched for Balb/C recipients). On day +4, recipient mice received a single tail vein injection with either KIR ligand matched, KIR ligand mismatched or unsorted “bulk” NK cells (0.5–1.0 x 106 NK cells). All (9/9) control transplant recipients (no adoptive NK cell infusion) as well as recipients of Ly49A/G (KIR ligand matched) NK cells (13/13) developed skin GVHD, in contrast to 4/7 (57%, p=0.03) recipients of bulk NK cells and only a minority (13% [1/8], p < 0.01) of animals receiving KIR ligand mismatched NK cells. Using a cumulative clinical GVHD scoring system (total score = 9), overall GVHD was decreased in recipients of KIR ligand mismatched NK cells (median score = 0 at day +45) compared to mice that received KIR ligand matched NK cells (median score = 3; p = 0.15) or no NK cells (median score = 3; p= 0.12); no significant difference in survival was observed between cohorts. This murine model provides the first in vivo evidence that adoptively infused KIR ligand mismatched allogeneic NK cells reduce GVHD following T-cell replete MHC matched allogeneic transplantation. The impact of infusing multiple doses of KIR ligand mismatched NK cells on GVHD and their ability to induce a graft-vs-tumor effect in tumor bearing Balb/c mice is currently being evaluated.


Sign in / Sign up

Export Citation Format

Share Document