scholarly journals Label-Free Enrichment of Functional Cardiomyocytes Using Microfluidic Deterministic Lateral Flow Displacement

PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e37619 ◽  
Author(s):  
Boyang Zhang ◽  
James V. Green ◽  
Shashi K. Murthy ◽  
Milica Radisic
Author(s):  
Antonia Perju ◽  
Nongnoot Wongkaew

AbstractLateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA’s performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Ming-Da Zhou ◽  
Sijie Hao ◽  
Anthony J. Williams ◽  
Ramdane A. Harouaka ◽  
Brett Schrand ◽  
...  

2016 ◽  
Vol 27 ◽  
pp. ix15-ix16
Author(s):  
Y.F. Lee ◽  
N. Ramalingam ◽  
L. Szpankowski ◽  
A. Leyrat ◽  
N.D. Angeles ◽  
...  

Biosensors ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 130 ◽  
Author(s):  
Georgina Ross ◽  
Maria Bremer ◽  
Jan Wichers ◽  
Aart van Amerongen ◽  
Michel Nielen

Lateral Flow Immunoassays (LFIAs) allow for rapid, low-cost, screening of many biomolecules such as food allergens. Despite being classified as rapid tests, many LFIAs take 10–20 min to complete. For a really high-speed LFIA, it is necessary to assess antibody association kinetics. By using a label-free optical technique such as Surface Plasmon Resonance (SPR), it is possible to screen crude monoclonal antibody (mAb) preparations for their association rates against a target. Herein, we describe an SPR-based method for screening and selecting crude anti-hazelnut antibodies based on their relative association rates, cross reactivity and sandwich pairing capabilities, for subsequent application in a rapid ligand binding assay. Thanks to the SPR selection process, only the fast mAb (F-50-6B12) and the slow (S-50-5H9) mAb needed purification for labelling with carbon nanoparticles to exploit high-speed LFIA prototypes. The kinetics observed in SPR were reflected in LFIA, with the test line appearing within 30 s, almost two times faster when F-50-6B12 was used, compared with S-50-5H9. Additionally, the LFIAs have demonstrated their future applicability to real life samples by detecting hazelnut in the sub-ppm range in a cookie matrix. Finally, these LFIAs not only provide a qualitative result when read visually, but also generate semi-quantitative data when exploiting freely downloadable smartphone apps.


2012 ◽  
Vol 84 (18) ◽  
pp. 7954-7962 ◽  
Author(s):  
Per Augustsson ◽  
Cecilia Magnusson ◽  
Maria Nordin ◽  
Hans Lilja ◽  
Thomas Laurell

Chemosensors ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 271
Author(s):  
Antra Ganguly ◽  
Tahmineh Ebrahimzadeh ◽  
Philippe E. Zimmern ◽  
Nicole J. De Nisco ◽  
Shalini Prasad

A label-free, rapid, and easy-to-use lateral flow electrochemical biosensor was developed for urinary tract infection (UTI) diagnosis in resource challenged areas. The sensor operates in non-faradaic mode and utilizes Electrochemical Impedance Spectroscopy for quantification of Prostaglandin E2, a diagnostic and prognostic urinary biomarker for UTI and recurrent UTI. To achieve high sensitivity in low microliter volumes of neat, unprocessed urine, nanoconfinement of assay biomolecules was achieved by developing a three-electrode planar gold microelectrode system on top of a lateral flow nanoporous membrane. The sensor is capable of giving readouts within 5 min and has a wide dynamic range of 100–4000 pg/mL for urinary PGE2. The sensor is capable of discriminating between low and high levels of PGE2 and hence is capable of threshold classification of urine samples as UTI positive and UTI negative. The sensor through its immunological response (directly related to host immune response) is superior to the commercially available point-of-care UTI dipsticks which are qualitative, have poor specificity for UTI, and have high false-positive rates. The developed sensor shows promise for rapid, easy and cost-effective UTI diagnosis for both clinical and home-based settings. More accurate point-of-care UTI diagnosis will improve patient outcomes and allow for timely and appropriate prescription of antibiotics which can subsequently increase treatment success rates and reduce costs.


2020 ◽  
Vol 152 ◽  
pp. 111982 ◽  
Author(s):  
Tayloria N.G. Adams ◽  
Alan Y.L. Jiang ◽  
Nicolo S. Mendoza ◽  
Clarissa C. Ro ◽  
Do-Hyun Lee ◽  
...  

2015 ◽  
Vol 7 (12) ◽  
pp. 4957-4964 ◽  
Author(s):  
ZhuanZhuan Shi ◽  
YunLi Tian ◽  
XiaoShuai Wu ◽  
ChangMing Li ◽  
Ling Yu

A one-piece lateral flow impedance strip was developed for detection of clenbuterol hydrochloride, a restricted food additive.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jose Montoya Mira ◽  
Ajay A. Sapre ◽  
Brett S. Walker ◽  
Jesus Bueno Alvarez ◽  
Kyle T. Gustafson ◽  
...  

AbstractCellular circulating biomarkers from the primary tumor such as circulating tumor cells (CTCs) and circulating hybrid cells (CHCs) have been described to harbor tumor-like phenotype and genotype. CHCs are present in higher numbers than CTCs supporting their translational potential. Methods for isolation of CHCs do not exist and are restricted to low-throughput, time consuming, and biased methodologies. We report the development of a label-free dielectrophoretic microfluidic platform facilitating enrichment of CHCs in a high-throughput and rapid fashion by depleting healthy peripheral blood mononuclear cells (PBMCs). We demonstrated up to 96.5% depletion of PBMCs resulting in 18.6-fold enrichment of cancer cells. In PBMCs from pancreatic adenocarcinoma patients, the platform enriched neoplastic cells identified by their KRAS mutant status using droplet digital PCR with one hour of processing. Enrichment was achieved in 75% of the clinical samples analyzed, establishing this approach as a promising way to non-invasively analyze tumor cells from patients.


Sign in / Sign up

Export Citation Format

Share Document