scholarly journals Activate to Eradicate: Inhibition of Clostridium difficile Spore Outgrowth by the Synergistic Effects of Osmotic Activation and Nisin

PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54740 ◽  
Author(s):  
Michelle M. Nerandzic ◽  
Curtis J. Donskey
2017 ◽  
Vol 63 (7) ◽  
pp. 638-643 ◽  
Author(s):  
Changhoon Chai ◽  
Kyung-Soo Lee ◽  
Goo-Sang Imm ◽  
Young Soon Kim ◽  
Se-Wook Oh

Inactivating Clostridium difficile spores is difficult, as they are resistant to heat, chemicals, and antimicrobials. However, this note describes inactivation of C. difficile spore outgrowth by incubation in a solution containing a germinant (1% (m/v) sodium taurocholate), co-germinants (1% (m/v) tryptose and 1% (m/v) NaCl), and natural antimicrobials (20 nmol·L–1 nisin and 0.2 mmol·L–1 lysozyme). Clostridium difficile spores were resistant to nisin and lysozyme but became susceptible during germination and outgrowth triggered and promoted by sodium taurocholate, tryptose, and NaCl. The degree of inactivation of germinated and outgrowing C. difficile spores by both nisin and lysozyme was greater than the sum of that by nisin and lysozyme individually, suggesting synergistic inactivation of C. difficile spores. The germinant, co-germinants, and natural antimicrobials used in this study are safe for human contact and consumption. Therefore, these findings will facilitate the development of a safe and effective method to inactivate C. difficile spore.


2013 ◽  
Vol 62 (9) ◽  
pp. 1405-1413 ◽  
Author(s):  
P. Moore ◽  
L. Kyne ◽  
A. Martin ◽  
K. Solomon

Spore germination is an important part of the pathogenesis of Clostridium difficile infection (CDI). Spores are resistant to antibiotics, including those therapeutically administered for CDI and strains with a high germination rate are significantly more likely to be implicated in recurrent CDI. The role of germination efficiency in cases of refractory CDI where first-line therapy fails remains unclear. We investigated spore germination efficiencies of clinical C. difficile isolates by measuring drop in OD600 and colony forming efficiency. Ribotype 027 isolates exhibited significantly higher germination efficiencies in the presence of 0.1 % (w/v) sodium taurocholate (51.66±8.75 %; 95 % confidence interval (CI) 47.37–55.95 %) than ribotype 106 (41.91±8.35 %; 95 % CI 37.82–46 %) (P<0.05) and ribotype 078 (42.07±8.57 %, 95 % CI 37.22–46.92 %) (P<0.05). Spore outgrowth rates were comparable between the ribotype groups but the exponential phase occurred approximately 4 h later in the absence of sodium taurocholate. Spore germination efficiencies for isolates implicated in severe CDI were significantly higher (49.68±10.00 %, 95 % CI 47.06–52.30 %) than non-severe CDI (40.92±9.29 %, 95 % CI 37.48–44.36 %); P<0.01. Germination efficiencies were also significantly higher in recurrent CDI or when metronidazole therapy failed than when therapy was successful [(49.00±10.49 %, 95 % CI 46.25–51.75 %) versus (41.42±9.43 %, 95 % CI 37.93–44.91 %); P<0.01]. This study suggests an important link between C. difficile spore germination, CDI pathogenesis and response to treatment; however, further work is warranted before the complex interplay between germination dynamics and CDI outcome can be fully understood.


2017 ◽  
Vol 66 (8) ◽  
pp. 1229-1234 ◽  
Author(s):  
Shankumar Mooyottu ◽  
Genevieve Flock ◽  
Kumar Venkitanarayanan

2019 ◽  
Vol 68 (7) ◽  
pp. 1118-1128 ◽  
Author(s):  
Abraham Joseph Pellissery ◽  
Poonam Gopika Vinayamohan ◽  
Hsin-Bai Yin ◽  
Shankumar Mooyottu ◽  
Kumar Venkitanarayanan

2014 ◽  
Vol 58 (10) ◽  
pp. 5719-5725 ◽  
Author(s):  
Sabine Nuding ◽  
Tina Frasch ◽  
Martin Schaller ◽  
Eduard F. Stange ◽  
Lutz T. Zabel

ABSTRACTAccelerating rates of health care-associated infections caused byClostridium difficile, with increasing recurrence and rising antibiotic resistance rates, have become a serious problem in recent years. This study was conducted to explore whether a combination of antibiotics with human antimicrobial peptides may lead to an increase in antibacterial activity. Thein vitroactivities of the antimicrobial peptides HBD1 to HBD3, HNP1, HD5, and LL-37 and the antibiotics tigecycline, moxifloxacin, piperacillin-tazobactam, and meropenem alone or in combination against 10 toxinogenic and 10 nontoxinogenicC. difficilestrains were investigated. Bacterial viability was determined by flow cytometry and toxin production by enzyme-linked immunosorbent assay (ELISA). When combined at subinhibitory concentrations, antimicrobial peptides and antibiotics generally led to an additive killing effect against toxinogenic and nontoxinogenicC. difficilestrains. However, LL-37 and HBD3 acted in synergism with all the antibiotics that were tested. Electron microscopy revealed membrane perturbation in bacterial cell walls by HBD3. In 3 out of 10 toxinogenic strains, HBD3, LL-37, piperacillin-tazobactam, and meropenem administration led to an increased toxin release which was not neutralized by the addition of HNP1. Antimicrobial peptides increase the bacterial killing of antibiotics againstC. difficileregardless of the antibiotics' mode of action. Membrane perturbation in or pore formation on the bacterial cell wall may enhance the uptake of antibiotics and increase their antibacterial effect. Therefore, a combination of antibiotics with antimicrobial peptides may represent a promising novel approach to the treatment ofC. difficileinfections.


Author(s):  
W.W. Adams ◽  
S. J. Krause

Rigid-rod polymers such as PBO, poly(paraphenylene benzobisoxazole), Figure 1a, are now in commercial development for use as high-performance fibers and for reinforcement at the molecular level in molecular composites. Spinning of liquid crystalline polyphosphoric acid solutions of PBO, followed by washing, drying, and tension heat treatment produces fibers which have the following properties: density of 1.59 g/cm3; tensile strength of 820 kpsi; tensile modulus of 52 Mpsi; compressive strength of 50 kpsi; they are electrically insulating; they do not absorb moisture; and they are insensitive to radiation, including ultraviolet. Since the chain modulus of PBO is estimated to be 730 GPa, the high stiffness also affords the opportunity to reinforce a flexible coil polymer at the molecular level, in analogy to a chopped fiber reinforced composite. The objectives of the molecular composite concept are to eliminate the thermal expansion coefficient mismatch between the fiber and the matrix, as occurs in conventional composites, to eliminate the interface between the fiber and the matrix, and, hopefully, to obtain synergistic effects from the exceptional stiffness of the rigid-rod molecule. These expectations have been confirmed in the case of blending rigid-rod PBZT, poly(paraphenylene benzobisthiazole), Figure 1b, with stiff-chain ABPBI, poly 2,5(6) benzimidazole, Fig. 1c A film with 30% PBZT/70% ABPBI had tensile strength 190 kpsi and tensile modulus of 13 Mpsi when solution spun from a 3% methane sulfonic acid solution into a film. The modulus, as predicted by rule of mixtures, for a film with this composition and with planar isotropic orientation, should be 16 Mpsi. The experimental value is 80% of the theoretical value indicating that the concept of a molecular composite is valid.


2010 ◽  
Vol 44 (4) ◽  
pp. 13
Author(s):  
SHARON WORCESTER

Sign in / Sign up

Export Citation Format

Share Document