scholarly journals Apolipoprotein E Mediates Attachment of Clinical Hepatitis C Virus to Hepatocytes by Binding to Cell Surface Heparan Sulfate Proteoglycan Receptors

PLoS ONE ◽  
2013 ◽  
Vol 8 (7) ◽  
pp. e67982 ◽  
Author(s):  
Jieyun Jiang ◽  
Xianfang Wu ◽  
Hengli Tang ◽  
Guangxiang Luo
2012 ◽  
Vol 86 (13) ◽  
pp. 7256-7267 ◽  
Author(s):  
J. Jiang ◽  
W. Cun ◽  
X. Wu ◽  
Q. Shi ◽  
H. Tang ◽  
...  

1992 ◽  
Vol 267 (6) ◽  
pp. 3894-3900
Author(s):  
A Pierce ◽  
M Lyon ◽  
I.N. Hampson ◽  
G.J. Cowling ◽  
J.T. Gallagher

1990 ◽  
Vol 140 (1) ◽  
pp. 83-92 ◽  
Author(s):  
Michael Solursh ◽  
Rebecca S. Reiter ◽  
Karen L. Jensen ◽  
Masato Kato ◽  
Merton Bernfield

2015 ◽  
Vol 89 (7) ◽  
pp. 3846-3858 ◽  
Author(s):  
Yan Xu ◽  
Pierre Martinez ◽  
Karin Séron ◽  
Guangxiang Luo ◽  
Fabrice Allain ◽  
...  

ABSTRACTHepatitis C virus (HCV) entry involves binding to cell surface heparan sulfate (HS) structures. However, due to the lipoprotein-like structure of HCV, the exact contribution of virion components to this interaction remains controversial. Here, we investigated the relative contribution of HCV envelope proteins and apolipoprotein E in the HS-binding step. Deletion of hypervariable region 1, a region previously proposed to be involved in HS binding, did not alter HCV virion binding to HS, indicating that this region is not involved in this interaction in the context of a viral infection. Patient sera and monoclonal antibodies recognizing different regions of HCV envelope glycoproteins were also used in a pulldown assay with beads coated with heparin, a close HS structural homologue. Although isolated HCV envelope glycoproteins could interact with heparin, none of these antibodies was able to interfere with the virion-heparin interaction, strongly suggesting that at the virion surface, HCV envelope glycoproteins are not accessible for HS binding. In contrast, results from kinetic studies, heparin pulldown experiments, and inhibition experiments with anti-apolipoprotein E antibodies indicated that this apolipoprotein plays a major role in HCV-HS interaction. Finally, characterization of the HS structural determinants required for HCV infection by silencing of the enzymes involved in the HS biosynthesis pathway and by competition with modified heparin indicated thatN- and 6-O-sulfation but not 2-O-sulfation is required for HCV infection and that the minimum HS oligosaccharide length required for HCV infection is a decasaccharide. Together, these data indicate that HCV hijacks apolipoprotein E to initiate its interaction with specific HS structures.IMPORTANCEHepatitis C is a global health problem. Hepatitis C virus (HCV) infects approximately 130 million individuals worldwide, with the majority of cases remaining undiagnosed and untreated. In most infected individuals, the virus evades the immune system and establishes a chronic infection. As a consequence, hepatitis C is the leading cause of cirrhosis, end-stage liver disease, hepatocellular carcinoma, and liver transplantation. Virus infection is initiated by entry of the virus into the host cell. In this study, we provide new insights into the viral and cellular determinants involved in the first step of HCV entry, the binding of the virus to host cells. We show that apolipoprotein E is likely responsible for virus binding to heparan sulfate and thatN- and 6-O-sulfation of the heparan sulfate proteoglycans is required for HCV infection. In addition, the minimal HS length unit required for HCV infection is a decasaccharide.


1993 ◽  
Vol 9 (2) ◽  
pp. 167-174 ◽  
Author(s):  
MAHESH PATEL ◽  
MASAKI YANAGISHITA ◽  
GREGORY RODERIQUEZ ◽  
DUMITH CHEQUER BOU-HABIB ◽  
TAMAS ORAVECZ ◽  
...  

2004 ◽  
Vol 78 (8) ◽  
pp. 3817-3826 ◽  
Author(s):  
Masaru Tamura ◽  
Katsuro Natori ◽  
Masahiko Kobayashi ◽  
Tatsuo Miyamura ◽  
Naokazu Takeda

ABSTRACT Norovirus (NV), a member of the family Caliciviridae, is one of the important causative agents of acute gastroenteritis. In the present study, we found that virus-like particles (VLPs) derived from genogroup II (GII) NV were bound to cell surface heparan sulfate proteoglycan. Interestingly, the VLPs derived from GII were more than ten times likelier to bind to cells than were those derived from genogroup I (GI). Heparin, a sulfated glycosaminoglycan, and suramin, a highly sulfated derivative of urea, efficiently blocked VLP binding to mammalian cell surfaces. The reagents known to bind to cell surface heparan sulfate, as well as the enzymes that specifically digest heparan sulfate, markedly reduced VLP binding to the cells. Treatment of the cells with chlorate revealed that sulfation of heparan sulfate plays an important role in the NV-heparan sulfate interaction. The binding efficiency of NV to undifferentiated Caco-2 (U-Caco-2) cells differed largely between GI NV and GII NV, whereas the efficiency of binding to differentiated Caco-2 (D-Caco-2) cells did not differ significantly between the two genogroups, although slight differences between strains were observed. Digestion with heparinase I resulted in a reduction of up to 90% in U-Caco-2 cells and a reduction of up to only 50% in D-Caco-2 cells, indicating that heparan sulfate is the major binding molecule for U-Caco-2 cells, while it contributed to only half of the binding in the case of D-Caco-2 cells. The other half of those VLPs was likely to be associated with H-type blood antigen, suggesting that GII NV has two separate binding sites. The present study is the first to address the possible role of cell surface glycosaminoglycans in the binding of recombinant VLPs of NV.


Sign in / Sign up

Export Citation Format

Share Document