scholarly journals Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient

PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e72510 ◽  
Author(s):  
Carl Drews
2013 ◽  
Vol 30 (3) ◽  
pp. 590-608 ◽  
Author(s):  
Shiqiu Peng ◽  
Yineng Li ◽  
Lian Xie

Abstract A three-dimensional ocean model and its adjoint model are used to adjust the drag coefficient in the calculation of wind stress for storm surge forecasting. A number of identical twin experiments (ITEs) with different error sources imposed are designed and performed. The results indicate that when the errors come from the wind speed, the drag coefficient is adjusted to an “optimal value” to compensate for the wind errors, resulting in significant improvements of the specific storm surge forecasting. In practice, the “true” drag coefficient is unknown and the wind field, which is usually calculated by an empirical parameter model or a numerical weather prediction model, may contain large errors. In addition, forecasting errors may also come from imperfect model physics and numerics, such as insufficient resolution and inaccurate physical parameterizations. The results demonstrate that storm surge forecasting errors can be reduced through data assimilation by adjusting the drag coefficient regardless of the error sources. Therefore, although data assimilation may not fix model imperfection, it is effective in improving storm surge forecasting by adjusting the wind stress drag coefficient using the adjoint technique.


2015 ◽  
Vol 120 (2) ◽  
pp. 716-727 ◽  
Author(s):  
Zhong-Kuo Zhao ◽  
Chun-Xia Liu ◽  
Qi Li ◽  
Guang-Feng Dai ◽  
Qing-Tao Song ◽  
...  

2014 ◽  
Vol 8 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Yumei Ding ◽  
Hao Wei

A hindcast of typical extratropical storm surge occurring in the Bohai Sea in Oct. 2003 is performed using a three-dimensional storm surge model system based on Finite-Volume Coastal Ocean Model (FVCOM). The surface winds are obtained from the WRF data set. Some preliminary sensitivity studies of the influential factors affecting the storm surge simulation in the Bohai Sea are conducted with the high revolution numerical model of storm surge. The factors of tide-surge interaction, the wind stress, the water depth, the bottom drag coefficient and the critical depth in the model are studied. After considering the tide-wind interaction and the severe wind, the most important influential factor affecting the storm surge in the Bohai Sea is the bottom drag coefficient. These sensitivity studies indicate that the storm surge simulations depend critically on the parameterizations. Hence additional experimental guidance is required on the bottom drag coefficient. This study is useful for the storm surge simulation in order to select the proper parameter to make possible a good conservation behavior of the storm surge model.


2012 ◽  
Vol 12 (7) ◽  
pp. 2399-2410 ◽  
Author(s):  
D. Vatvani ◽  
N. C. Zweers ◽  
M. van Ormondt ◽  
A. J. Smale ◽  
H. de Vries ◽  
...  

Abstract. To simulate winds and water levels, numerical weather prediction (NWP) and storm surge models generally use the traditional bulk relation for wind stress, which is characterized by a wind drag coefficient. A still commonly used drag coefficient in those models, some of them were developed in the past, is based on a relation, according to which the magnitude of the coefficient is either constant or increases monotonically with increasing surface wind speed (Bender, 2007; Kim et al., 2008; Kohno and Higaki, 2006). The NWP and surge models are often tuned independently from each other in order to obtain good results. Observations have indicated that the magnitude of the drag coefficient levels off at a wind speed of about 30 m s−1, and then decreases with further increase of the wind speed. Above a wind speed of approximately 30 m s−1, the stress above the air-sea interface starts to saturate. To represent the reducing and levelling off of the drag coefficient, the original Charnock drag formulation has been extended with a correction term. In line with the above, the Delft3D storm surge model is tested using both Charnock's and improved Makin's wind drag parameterization to evaluate the improvements on the storm surge model results, with and without inclusion of the wave effects. The effect of waves on storm surge is included by simultaneously simulating waves with the SWAN model on identical model grids in a coupled mode. However, the results presented here will focus on the storm surge results that include the wave effects. The runs were carried out in the Gulf of Mexico for Katrina and Ivan hurricane events. The storm surge model was initially forced with H*wind data (Powell et al., 2010) to test the effect of the Makin's wind drag parameterization on the storm surge model separately. The computed wind, water levels and waves are subsequently compared with observation data. Based on the good results obtained, we conclude that, for a good reproduction of the storm surges under hurricane conditions, Makin's new drag parameterization is favourable above the traditional Charnock relation. Furthermore, we are encouraged by these results to continue the studies and establish the effect of improved Makin's wind drag parameterization in the wave model. The results from this study will be used to evaluate the relevance of extending the present towards implementation of a similar wind drag parameterization in the SWAN wave model, in line with our aim to apply a consistent wind drag formulation throughout the entire storm surge modelling approach.


Author(s):  
Ryota Nakamura ◽  
Martin Mäll ◽  
Tomoya Shibayama ◽  
Shigeru Kato

The numerical coastal circulation models play an essential role in predicting storm surges. Several models (e.g. ADCIRC: Dietrich et al., 2004, FVCOM: Chen et al., 2003) have been previously inter-compared (Kerr et al., 2013; Chen et al., 2013). In these studies, storm surges were reproduced in locations where the bathymetry has a gradual increase from offshore to coast, within a closed gulf. On the other hand, there are few studies in regards to modelling storm surge where the near coast bathymetry is steep and connected to open ocean. Considering the storm surge dependence on local bathymetry, it can be important to conduct an inter-comparison of ocean circulation models in such a region. In this study, numerical coastal circulation models (2D-ADCIRC and 3D-FVCOM) are compared by using a 2014 Dec. storm surge event at Nemuro city in Hokkaido (Japan), which was caused by a rapidly intensified extra-tropical cyclone approaching the area. In this region, local bathymetry is steep due to Japan Trench. The cyclone caused a storm surge of nearly up to 1.8 m within the Nemuro city between 00:00 UTC 16th and 17th Dec. 2014. The aim of this study is to evaluate the performance of ocean circulation models using several air-sea drag coefficients and contribute to inter-comparison studies using ADCIRC and FVCOM.


Author(s):  
Junli Xu ◽  
Yuhong Zhang ◽  
Xianqing Lv ◽  
Qiang Liu

In this study, water levels observed at tide stations in the Bohai Sea, Yellow Sea, and East China Sea during Typhoons 7203 and 8509 were assimilated into a numerical assimilation storm surge model combined with regularization technique to study the wind-stress drag coefficient. The Tikhonov regularization technique with different regularization parameters was tested during the assimilation. Using the regularization technique, the storm surge elevations were successfully simulated in the whole sea areas during Typhoons 7203 and 8509. The storm surge elevations calculated with the regularization technique and the elevations calculated with independent point method were separately compared with the observed data. Comparison results demonstrated that the former was closer to the observed data. The regularization technique had the best performance when the regularization parameter was 100. The spatial distribution of the inverted drag coefficient, storm surge elevations, and the wind fields during both typhoons were presented. Simulated results indicated that the change of drag coefficient is more significant in the coastal regions of the Bohai Sea and north of the Yellow Sea. Further analysis showed that the rising water elevation in the Bohai Sea is mostly attributed to the influence of onshore winds, and the negative storm surge in the South Yellow Sea is mainly caused by offshore winds.


Author(s):  
Junichi NINOMIYA ◽  
Nobuhito MORI ◽  
Tomohiro YASUDA ◽  
Hajime MASE ◽  
Luca R. CENTURIONI ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document