scholarly journals The Impact of KLF2 Modulation on the Transcriptional Program and Function of CD8 T Cells

PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e77537 ◽  
Author(s):  
Gavin C. Preston ◽  
Carmen Feijoo-Carnero ◽  
Nick Schurch ◽  
Victoria H. Cowling ◽  
Doreen A. Cantrell
Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 564-564
Author(s):  
John C. Riches ◽  
Jeff K. Davies ◽  
Fabienne McClanahan ◽  
Rewas Fatah ◽  
Sameena Iqbal ◽  
...  

Abstract Abstract 564 The ability to evade immune destruction is increasingly being recognised as a crucial feature of cancer cells. Chronic lymphocytic leukemia (CLL) is associated with profound defects in T-cell function, resulting in failure of anti-tumor immunity and increased susceptibility to infections. T cells from CLL patients exhibit functional defects and alterations in gene expression, that show similarities to exhausted T cells in chronic viral infections. However, it is unclear whether CLL T cells are truly exhausted, or whether these defects are restricted to expanded populations of CMV specific T cells. We investigated the phenotype and function of CD8+ T cells from CLL patients and controls matched for age and CMV-serostatus. We demonstrate an increased proportion of CCR7- effector T cells in both CLL patients and CMV-seropositive individuals (p<0.05). CD8+ and CD4+ T cells from CLL patients had increased expression of exhaustion markers CD160 and CD244 irrespective of CMV-serostatus (p<0.01), whereas increased PD1 expression on CD8+ T cells was limited to CMV-seronegative patients (p=0.002). CLL CD8+ T cells also showed functional defects in proliferation and cytotoxicity irrespective of CMV-serostatus, with the cytolytic defect caused by a combination of impaired granzyme B packaging into secretory vesicles and non-polarized degranulation. In contrast to virally-induced exhaustion, CLL T cells showed increased production of interferon-γ with increased T-BET expression (p<0.01), normal IL-2 production, and no downregulation of IL-7R. Therefore, while CLL CD8+ T cells exhibit some features of T-cell exhaustion, they show important differences (Table 1). These findings also exclude CMV as the sole cause of T cell defects in CLL. Lenalidomide has recently been demonstrated to have significant clinical activity in CLL. Its mechanism of action in this disease is not well understood, but it thought to act primarily by a combination of CLL cell and immune cell activation. We therefore examined the ability of lenalidomide to repair the observed T cell defects by investigating the impact of this agent on the gene expression profiles and function of CLL T cells. Treatment of CLL CD8+ T cells with lenalidomide increased the expression of 137 genes, while 34 genes were downregulated. The most prominent changes in expression were of genes involved in cytoskeletal signaling including WASF1 (Wiskott-Aldrich syndrome protein, family member 1), and TPM2 (tropomyosin 2). There was also upregulation of genes involved in lymphocyte activation, including TNFSF4 (Tumor necrosis factor ligand superfamily, member 4: OX40L), LAG3 (Lymphocyte-activation gene 3), and TNF, and genes involved in cell proliferation such as IKZF1 (Ikaros) and GRN (Granulin). Although lenalidomide treatment or anti-CD3 stimulation alone had no impact on T-bet expression, co-treatment with both anti-CD3 stimulation and lenalidomide resulted in significantly enhanced T-bet expression and increased production of interferon-γ. In contrast, lenalidomide treatment alone was able to improve T cell cytotoxic function, associated with repair of trafficking of granzyme B into the immunological synapse. In conclusion, T cells from CLL patients exhibit features of T-cell pseudo-exhaustion that are present irrespective of CMV serostatus. Treatment of CLL T cells with lenalidomide results in upregulation of genes involved in proliferation, activation, and cytoskeletal pathways, resulting in repair of the functional T cell defects. Table 1. Comparison of the phenotypic and functional defects of T cells from CLL patients with T-cell “exhaustion” in chronic viral infections Exhausted T cells in chronic viral infections T cells from CLL patients Increased expression of inhibitory receptors Yes Yes Abnormal transcription factor profile Yes Yes Reduced proliferative potential Yes Yes Decreased expression of IL-7R (CD127) Yes No Decreased cytokine production ↓IL-2, ↓IFN-γ Yes No Impaired cytotoxicity Yes Yes Disclosures: Riches: Celgene: Research Funding. Gribben:Celgene: Honoraria; Roche: Honoraria; Pharmacyclics: Honoraria; GSK: Honoraria; Mundipharma: Honoraria; Gilead: Honoraria.


2019 ◽  
Vol 216 (3) ◽  
pp. 571-586 ◽  
Author(s):  
Isabel Barnstorf ◽  
Mariana Borsa ◽  
Nicolas Baumann ◽  
Katharina Pallmer ◽  
Alexander Yermanos ◽  
...  

Chronic viral infections are widespread among humans, with ∼8–12 chronic viral infections per individual, and there is epidemiological proof that these impair heterologous immunity. We studied the impact of chronic LCMV infection on the phenotype and function of memory bystander CD8+ T cells. Active chronic LCMV infection had a profound effect on total numbers, phenotype, and function of memory bystander T cells in mice. The phenotypic changes included up-regulation of markers commonly associated with effector and exhausted cells and were induced by IL-6 in a STAT1-dependent manner in the context of chronic virus infection. Furthermore, bystander CD8 T cell functions were reduced with respect to their ability to produce inflammatory cytokines and to undergo secondary expansion upon cognate antigen challenge with major cell-extrinsic contributions responsible for the diminished memory potential of bystander CD8+ T cells. These findings open new perspectives for immunity and vaccination during chronic viral infections.


2014 ◽  
Vol 17 (3) ◽  
pp. 421-426 ◽  
Author(s):  
B. Tokarz-Deptuła ◽  
P. Niedźwiedzka-Rystwej ◽  
B. Hukowska-Szematowicz ◽  
M. Adamiak ◽  
A. Trzeciak-Ryczek ◽  
...  

Abstract In Poland, rabbit is a highly valued animal, due to dietetic and flavour values of its meat, but above all, rabbits tend to be commonly used laboratory animals. The aim of the study was developing standards for counts of B-cells with CD19+ receptor, T-cells with CD5+ receptor, and their subpopulations, namely T-cells with CD4+, CD8+ and CD25+ receptor in the peripheral blood of mixed-breed Polish rabbits with addition of blood of meet breeds, including the assessment of the impact of four seasons of the year and animal sex on the values of the immunological parameters determined. The results showed that the counts of B- and T-cells and their subpopulations in peripheral blood remain within the following ranges: for CD19+ B-cells: 1.05 - 3.05%, for CD5+ T-cells: 34.00 - 43.07%, CD4+ T-cells: 23.52 - 33.23%, CD8+ T-cells: 12.55 - 17.30%, whereas for CD25+ T-cells: 0.72 - 2.81%. As it comes to the season of the year, it was observed that it principally affects the values of CD25+ T-cells, while in the case of rabbit sex, more changes were found in females.


2001 ◽  
Vol 13 (4) ◽  
pp. 465-470 ◽  
Author(s):  
Christopher W McMahon ◽  
David H Raulet

2014 ◽  
pp. 181-192
Author(s):  
Udo F. Hartwig ◽  
Maya C. André ◽  
Christian Münz

2021 ◽  
Vol 12 ◽  
Author(s):  
Amund Holte Berger ◽  
Eirik Bratland ◽  
Thea Sjøgren ◽  
Marte Heimli ◽  
Torgeir Tyssedal ◽  
...  

Autoimmune polyendocrine syndrome type I (APS-1) is a monogenic model disorder of organ-specific autoimmunity caused by mutations in the Autoimmune regulator (AIRE) gene. AIRE facilitates the expression of organ-specific transcripts in the thymus, which is essential for efficient removal of dangerous self-reacting T cells and for inducing regulatory T cells (Tregs). Although reduced numbers and function of Tregs have been reported in APS-I patients, the impact of AIRE deficiency on gene expression in these cells is unknown. Here, we report for the first time on global transcriptional patterns of isolated Tregs from APS-1 patients compared to healthy subjects. Overall, we found few differences between the groups, although deviant expression was observed for the genes TMEM39B, SKIDA1, TLN2, GPR15, FASN, BCAR1, HLA-DQA1, HLA-DQB1, HLA-DRA, GPSM3 and AKR1C3. Of significant interest, the consistent downregulation of GPR15 may indicate failure of Treg gut homing which could be of relevance for the gastrointestinal manifestations commonly seen in APS-1. Upregulated FASN expression in APS-1 Tregs points to increased metabolic activity suggesting a putative link to faulty Treg function. Functional studies are needed to determine the significance of these findings for the immunopathogenesis of APS-1 and for Treg immunobiology in general.


Sign in / Sign up

Export Citation Format

Share Document