scholarly journals Protective Immunity against Lethal F. tularensis holarctica LVS Provided by Vaccination with Selected Novel CD8+ T Cell Epitopes

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e85215 ◽  
Author(s):  
Shahar Rotem ◽  
Ofer Cohen ◽  
Erez Bar-Haim ◽  
Liat Bar-On ◽  
Sharon Ehrlich ◽  
...  
2006 ◽  
Vol 81 (2) ◽  
pp. 934-944 ◽  
Author(s):  
Markus Cornberg ◽  
Brian S. Sheridan ◽  
Frances M. Saccoccio ◽  
Michael A. Brehm ◽  
Liisa K. Selin

ABSTRACT Live vaccinia virus (VV) vaccination has been highly successful in eradicating smallpox. However, the mechanisms of immunity involved in mediating this protective effect are still poorly understood, and the roles of CD8 T-cell responses in primary and secondary VV infections are not clearly identified. By applying the concept of molecular mimicry to identify potential CD8 T-cell epitopes that stimulate cross-reactive T cells specific to lymphocytic choriomeningitis virus (LCMV) and VV, we identified after screening only 115 peptides two VV-specific immunogenic epitopes that mediated protective immunity against VV. An immunodominant epitope, VV-e7r130, did not generate cross-reactive T-cell responses to LCMV, and a subdominant epitope, VV-a11r198, did generate cross-reactive responses to LCMV. Infection with VV induced strong epitope-specific responses which were stable into long-term memory and peaked at the time virus was cleared, consistent with CD8 T cells assisting in the control of VV. Two different approaches, direct adoptive transfer of VV-e7r-specific CD8 T cells and prior immunization with a VV-e7r-expressing ubiquitinated minigene, demonstrated that memory CD8 T cells alone could play a significant role in protective immunity against VV. These studies suggest that exploiting cross-reactive responses between viruses may be a useful tool to complement existing technology in predicting immunogenic epitopes to large viruses, such as VV, leading to a better understanding of the role CD8 T cells play during these viral infections.


2013 ◽  
Vol 51 (01) ◽  
Author(s):  
K Nitschke ◽  
J Schmidt ◽  
HE Blum ◽  
R Thimme ◽  
C Neumann-Haefelin

Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 29
Author(s):  
Laia Bosch-Camós ◽  
Elisabet López ◽  
María Jesús Navas ◽  
Sonia Pina-Pedrero ◽  
Francesc Accensi ◽  
...  

The development of subunit vaccines against African swine fever (ASF) is mainly hindered by the lack of knowledge regarding the specific ASF virus (ASFV) antigens involved in protection. As a good example, the identity of ASFV-specific CD8+ T-cell determinants remains largely unknown, despite their protective role being established a long time ago. Aiming to identify them, we implemented the IFNγ ELISpot as readout assay, using as effector cells peripheral blood mononuclear cells (PBMCs) from pigs surviving experimental challenge with Georgia2007/1. As stimuli for the ELISpot, ASFV-specific peptides or full-length proteins identified by three complementary strategies were used. In silico prediction of specific CD8+ T-cell epitopes allowed identifying a 19-mer peptide from MGF100-1L, as frequently recognized by surviving pigs. Complementarily, the repertoire of SLA I-bound peptides identified in ASFV-infected porcine alveolar macrophages (PAMs), allowed the characterization of five additional SLA I-restricted ASFV-specific epitopes. Finally, in vitro stimulation studies using fibroblasts transfected with plasmids encoding full-length ASFV proteins, led to the identification of MGF505-7R, A238L and MGF100-1L as promiscuously recognized antigens. Interestingly, each one of these proteins contain individual peptides recognized by surviving pigs. Identification of the same ASFV determinants by means of such different approaches reinforce the results presented here.


2014 ◽  
Vol 30 (S1) ◽  
pp. A175-A175
Author(s):  
Meika EI Richmond ◽  
Sandra A. Kiazyk ◽  
Lyle R. Mckinnon ◽  
Billy Nyanga ◽  
Charles Wachihi ◽  
...  
Keyword(s):  
T Cell ◽  

Sign in / Sign up

Export Citation Format

Share Document