scholarly journals Vitamin D Deficiency Aggravates Nephrotoxicity, Hypertension and Dyslipidemia Caused by Tenofovir: Role of Oxidative Stress and Renin-Angiotensin System

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e103055 ◽  
Author(s):  
Daniele Canale ◽  
Ana Carolina de Bragança ◽  
Janaína Garcia Gonçalves ◽  
Maria Heloisa Massola Shimizu ◽  
Talita Rojas Sanches ◽  
...  
2020 ◽  
Vol 27 (6) ◽  
pp. 463-475 ◽  
Author(s):  
Lucas M. Kangussu ◽  
Lucas Alexandre Santos Marzano ◽  
Cássio Ferraz Souza ◽  
Carolina Couy Dantas ◽  
Aline Silva Miranda ◽  
...  

Cerebrovascular Diseases (CVD) comprise a wide spectrum of disorders, all sharing an acquired or inherited alteration of the cerebral vasculature. CVD have been associated with important changes in systemic and tissue Renin-Angiotensin System (RAS). The aim of this review was to summarize and to discuss recent findings related to the modulation of RAS components in CVD. The role of RAS axes is more extensively studied in experimentally induced stroke. By means of AT1 receptors in the brain, Ang II hampers cerebral blood flow and causes tissue ischemia, inflammation, oxidative stress, cell damage and apoptosis. On the other hand, Ang-(1-7) by stimulating Mas receptor promotes angiogenesis in brain tissue, decreases oxidative stress, neuroinflammation, and improves cognition, cerebral blood flow, neuronal survival, learning and memory. In regard to clinical studies, treatment with Angiotensin Converting Enzyme (ACE) inhibitors and AT1 receptor antagonists exerts preventive and therapeutic effects on stroke. Besides stroke, studies support a similar role of RAS molecules also in traumatic brain injury and cerebral aneurysm. The literature supports a beneficial role for the alternative RAS axis in CVD. Further studies are necessary to investigate the therapeutic potential of ACE2 activators and/or Mas receptor agonists in patients with CVD.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yongyan Shi ◽  
Tianjing Liu ◽  
Li Yao ◽  
Yujiao Xing ◽  
Xinyi Zhao ◽  
...  

2019 ◽  
Vol 6 ◽  
Author(s):  
Ethan J. Kilmister ◽  
Claudia Paterson ◽  
Helen D. Brasch ◽  
Paul F. Davis ◽  
Swee T. Tan

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1669
Author(s):  
Tuladhar Sunanda ◽  
Bipul Ray ◽  
Arehally M. Mahalakshmi ◽  
Abid Bhat ◽  
Luay Rashan ◽  
...  

The past few decades have seen an increased emphasis on the involvement of the mitochondrial-associated membrane (MAM) in various neurodegenerative diseases, particularly in Parkinson’s disease (PD) and Alzheimer’s disease (AD). In PD, alterations in mitochondria, endoplasmic reticulum (ER), and MAM functions affect the secretion and metabolism of proteins, causing an imbalance in calcium homeostasis and oxidative stress. These changes lead to alterations in the translocation of the MAM components, such as IP3R, VDAC, and MFN1 and 2, and consequently disrupt calcium homeostasis and cause misfolded proteins with impaired autophagy, distorted mitochondrial dynamics, and cell death. Various reports indicate the detrimental involvement of the brain renin–angiotensin system (RAS) in oxidative stress, neuroinflammation, and apoptosis in various neurodegenerative diseases. In this review, we attempted to update the reports (using various search engines, such as PubMed, SCOPUS, Elsevier, and Springer Nature) demonstrating the pathogenic interactions between the various proteins present in mitochondria, ER, and MAM with respect to Parkinson’s disease. We also made an attempt to speculate the possible involvement of RAS and its components, i.e., AT1 and AT2 receptors, angiotensinogen, in this crosstalk and PD pathology. The review also collates and provides updated information on the role of MAM in calcium signaling, oxidative stress, neuroinflammation, and apoptosis in PD.


Endocrinology ◽  
2007 ◽  
Vol 148 (4) ◽  
pp. 1688-1696 ◽  
Author(s):  
Yuki Hirono ◽  
Takanobu Yoshimoto ◽  
Noriko Suzuki ◽  
Toru Sugiyama ◽  
Maya Sakurada ◽  
...  

Recently, aldosterone has been shown to activate local renin-angiotensin system in vitro. To elucidate the potential role of local renin-angiotensin system in aldosterone-induced cardiovascular injury, we investigated the effects of selective mineralocorticoid receptor (MR) antagonist eplerenone (EPL), angiotensin (Ang) II type 1 receptor antagonist candesartan (ARB), and superoxide dismutase mimetic tempol (TEM) on the development of hypertension, vascular injury, oxidative stress, and inflammatory-related gene expression in aldosterone-treated hypertensive rats. The increased systolic blood pressure and vascular inflammatory changes were attenuated by cotreatment either with EPL, ARB, or TEM. Aldosterone increased angiotensin-converting enzyme expression in the aortic tissue; its effects were blocked by EPL but not by ARB or TEM. Aldosterone also increased Ang II contents in the aortic tissue in the presence of low circulating Ang II concentrations. Aldosterone induced expression of various inflammatory-related genes, whose effects were abolished by EPL, whereas the inhibitory effects of ARB and TEM varied depending on the gene. Aldosterone caused greater accumulation of the oxidant stress marker 4-hydroxy-2-neonenal in the endothelium; its effect was abolished by EPL, ARB, or TEM. Aldosterone increased mRNA levels of reduced nicotinamide adenine dinucleotide phosphate oxidase components; their effect was abolished by EPL, whereas ARB and TEM decreased only the p47phox mRNA level but not that of p22phox or gp91phox. The present findings suggest that the Ang II-dependent pathway resulting from vascular angiotensin-converting enzyme up-regulation and Ang II-independent pathway are both involved in the underlying mechanisms resulting in the development of hypertension, vascular inflammation, and oxidative stress induced by aldosterone.


2001 ◽  
Vol 21 (6) ◽  
pp. 580-592 ◽  
Author(s):  
Arnold Boonstra ◽  
Dick de Zeeuw ◽  
Paul E. de Jong ◽  
Gerjan Navis

Sign in / Sign up

Export Citation Format

Share Document