scholarly journals Sub-Micrometer-Scale Mapping of Magnetite Crystals and Sulfur Globules in Magnetotactic Bacteria Using Confocal Raman Micro-Spectrometry

PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e107356 ◽  
Author(s):  
Stephan H. K. Eder ◽  
Alexander M. Gigler ◽  
Marianne Hanzlik ◽  
Michael Winklhofer
2008 ◽  
Vol 44 (3) ◽  
pp. 223-236 ◽  
Author(s):  
K. Ērglis ◽  
L. Alberte ◽  
A. Cēbers

2018 ◽  
Vol 249 ◽  
pp. 16-21 ◽  
Author(s):  
Longkun Wu ◽  
Limin Wang ◽  
Baokun Qi ◽  
Xiaonan Zhang ◽  
Fusheng Chen ◽  
...  

Author(s):  
Shuo Zhang ◽  
Frederieke A. M. van der Mee ◽  
Roel J. Erckens ◽  
Carroll A. B. Webers ◽  
Tos T. J. M. Berendschot

AbstractIn this report we present a confocal Raman system to identify the unique spectral features of two proteins, Interleukin-10 and Angiotensin Converting Enzyme. Characteristic Raman spectra were successfully acquired and identified for the first time to our knowledge, showing the potential of Raman spectroscopy as a non-invasive investigation tool for biomedical applications.


Author(s):  
Vincent Busigny ◽  
François P. Mathon ◽  
Didier Jézéquel ◽  
Cécile C. Bidaud ◽  
Eric Viollier ◽  
...  

2021 ◽  
Vol 22 (8) ◽  
pp. 4126
Author(s):  
Sara De Vincentiis ◽  
Alessandro Falconieri ◽  
Frank Mickoleit ◽  
Valentina Cappello ◽  
Dirk Schüler ◽  
...  

Magnetosomes are membrane-enclosed iron oxide crystals biosynthesized by magnetotactic bacteria. As the biomineralization of bacterial magnetosomes can be genetically controlled, they have become promising nanomaterials for bionanotechnological applications. In the present paper, we explore a novel application of magnetosomes as nanotool for manipulating axonal outgrowth via stretch-growth (SG). SG refers to the process of stimulation of axonal outgrowth through the application of mechanical forces. Thanks to their superior magnetic properties, magnetosomes have been used to magnetize mouse hippocampal neurons in order to stretch axons under the application of magnetic fields. We found that magnetosomes are avidly internalized by cells. They adhere to the cell membrane, are quickly internalized, and slowly degrade after a few days from the internalization process. Our data show that bacterial magnetosomes are more efficient than synthetic iron oxide nanoparticles in stimulating axonal outgrowth via SG.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rino Saiga ◽  
Masayuki Uesugi ◽  
Akihisa Takeuchi ◽  
Kentaro Uesugi ◽  
Yoshio Suzuki ◽  
...  

AbstractBrain blood vessels constitute a micrometer-scale vascular network responsible for supply of oxygen and nutrition. In this study, we analyzed cerebral tissues of the anterior cingulate cortex and superior temporal gyrus of schizophrenia cases and age/gender-matched controls by using synchrotron radiation microtomography or micro-CT in order to examine the three-dimensional structure of cerebral vessels. Over 1 m of cerebral blood vessels was traced to build Cartesian-coordinate models, which were then used for calculating structural parameters including the diameter and curvature of the vessels. The distribution of vessel outer diameters showed a peak at 7–9 μm, corresponding to the diameter of the capillaries. Mean curvatures of the capillary vessels showed a significant correlation to the mean curvatures of neurites, while the mean capillary diameter was almost constant, independent of the cases. Our previous studies indicated that the neurites of schizophrenia cases are thin and tortuous compared to controls. The curved capillaries with a constant diameter should occupy a nearly constant volume, while neurons suffering from neurite thinning should have reduced volumes, resulting in a volumetric imbalance between the neurons and the vessels. We suggest that the observed structural correlation between neurons and blood vessels is related to neurovascular abnormalities in schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document