enzyme characteristic
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Shuo Zhang ◽  
Frederieke A. M. van der Mee ◽  
Roel J. Erckens ◽  
Carroll A. B. Webers ◽  
Tos T. J. M. Berendschot

AbstractIn this report we present a confocal Raman system to identify the unique spectral features of two proteins, Interleukin-10 and Angiotensin Converting Enzyme. Characteristic Raman spectra were successfully acquired and identified for the first time to our knowledge, showing the potential of Raman spectroscopy as a non-invasive investigation tool for biomedical applications.


2017 ◽  
Vol 7 (01) ◽  
Author(s):  
Krisna Septiningrum ◽  
Ikhwan Pramuaji

This review introduce about biotechnological application of enzyme in pulp and paper industry. These enzymes can be applied as biological agents in biopulping, biobleaching including Hexenuronic acid (HexA) removal. Degrading enzyme from white rot fungi, xylanase, laccase, lipase and α-glucuronidase are the the most applicable enzyme in the process. Nowadays, enzyme application is still under laboratory scale, only a few is applied further until industrial scale. There are some limitations for further application related with technical aspects such as effectivity of the enzyme during its application comparing with chemical compounds, enzyme availability in the market, enzyme characteristic that appropriate with the process in pulp mill and economical aspect. In the other hand, these technologies also provide some advantages such as reduce energy consumption, reduce or substitute chemicals and more environmental friendly ABSTRAK Kajian ini berisi mengenai aplikasi bioteknologi terutama enzim di industri pulp dan kertas. Enzim ini dapat diaplikasikan pada proses pulping, biobleaching termasuk penghilangan Hexenuronic acid (HexA). Enzim dari jamur pelapuk putih, xilanase, lakase, lipase dan α-glucuronidase merupakan enzim yang penting untuk diaplikasikan pada proses-proses tersebut. Aplikasi enzim saat ini masih dalam skala laboratorium, hanya beberapa diterapkan lebih lanjut sampai skala industri. Beberapa keterbatasan untuk aplikasi lebih lanjut terkait dengan aspek teknis adalah efektivitas enzim yang lebih rendah jika dibandingkan dengan bahan kimia, keterbatasan produk enzim yang ada di pasar khususnya karakteristik enzim yang sesuai untuk industri pulp, dan keterbatasan dari aspek ekonomi. Namun di satu sisi, teknologi ini juga diketahui memiliki beberapa kelebihan seperti dapat mengurangi penggunaan energi, mengurangi atau substitusi bahan kimia, dan lebih ramah lingkungan


2012 ◽  
Vol 12 (2) ◽  
pp. 124
Author(s):  
Zusfahair Zusfahair ◽  
Tien Setyaningtyas ◽  
Amin Fatoni

A bacterial lipase producer was isolated from garbage dump soil and was identified its genus. Lipase was extractedaccording to production time optimized, purified using ammonium sulfate fractionation and gel chromatograph.Determination of enzyme characteristic studied were influence of pH, temperature, various metals to lipaseactivity. The result of this research shows that the genus of isolated bacteria which produced lipase wasAcinetobacter sp., the lipase optimum production time is about 18 hours with the activity is about 115 unit/mL. Thehighest activity of lipase fractionation using ammonium sulfate is about 45% and the highest activity of purifyingwith filtration gel chromatograph column using Sephadex G-150 at 24 th fraction. Lipase from crude extract andpurifying product at this fraction has optimum pH 6 and optimum temperature is about 40 oC. Lipase to be classifiedas metalloenzyme that shows with decreasing the activity after added the EDTA. Metals ion, such as Cu 2+ and Zn2+were inhibited the lipase activity. Ca 2+ ion could increase lipase crude extract activity but inhibited the activity oflipase purifying product. Hg2+ ion could increase the activity of lipase purifying product.


2000 ◽  
Vol 182 (10) ◽  
pp. 2753-2760 ◽  
Author(s):  
Dale A. Pelletier ◽  
Caroline S. Harwood

ABSTRACT A gene, badH, whose predicted product is a member of the short-chain dehydrogenase/reductase family of enzymes, was recently discovered during studies of anaerobic benzoate degradation by the photoheterotrophic bacterium Rhodopseudomonas palustris. Purified histidine-tagged BadH protein catalyzed the oxidation of 2-hydroxycyclohexanecarboxyl coenzyme A (2-hydroxychc-CoA) to 2-ketocyclohexanecarboxyl-CoA. These compounds are proposed intermediates of a series of three reactions that are shared by the pathways of cyclohexanecarboxylate and benzoate degradation used byR. palustris. The 2-hydroxychc-CoA dehydrogenase activity encoded by badH was dependent on the presence of NAD+; no activity was detected with NADP+ as a cofactor. The dehydrogenase activity was not sensitive to oxygen. The enzyme has apparent Km values of 10 and 200 μM for 2-hydroxychc-CoA and NAD+, respectively. Western blot analysis with antisera raised against purified His-BadH identified a 27-kDa protein that was present in benzoate- and cyclohexanecarboxylate-grown but not in succinate-grown R. palustris cell extracts. The active form of the enzyme is a homotetramer. badH was determined to be the first gene in an operon, termed the cyclohexanecarboxylate degradation operon, containing genes required for both benzoate and cyclohexanecarboxylate degradation. A nonpolar R. palustris badH mutant was unable to grow on benzoate or cyclohexanecarboxylate but had wild-type growth rates on succinate. Cells blocked in expression of the entire cyclohexanecarboxylate degradation operon excreted cyclohex-1-ene-1-carboxylate into the growth medium when given benzoate. This confirms that cyclohex-1-ene-1-carboxyl-CoA is an intermediate of anaerobic benzoate degradation by R. palustris. This compound had previously been shown not to be formed by Thauera aromatica, a denitrifying bacterium that degrades benzoate by a pathway that is slightly different from theR. palustris pathway. 2-Hydroxychc-CoA dehydrogenase does not participate in anaerobic benzoate degradation by T. aromatica and thus may serve as a useful indicator of an R. palustris-type benzoate degradation pathway.


1984 ◽  
Vol 57 (5) ◽  
pp. 1528-1530 ◽  
Author(s):  
T. R. Harris

The purpose of this work is to show mathematically the relationship between the classical maximum velocity of reaction, Vmax, for enzyme kinetics and an analogous parameter, Vmax, derived by Linehan and Dawson (J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47:404–411, 1979) for the analysis of tracers which disappear by saturation kinetics from the lung circulation during the passage of indicators after bolus injection. Rederivation of the original equation for the combination of flow and reaction in a capillary showed that Vmax is equal to the product of enzyme Vmax and the volume of endothelium, Ve, in which the enzyme resides. This implies that Vmax interpreted from multiple-indicator curves in the lung by the Linehan-Dawson method is a combination of an enzyme characteristic Vmax and a measure of functioning capillary surface during passage, Ve. Lung injury could change Vmax, functioning surface (Ve), or both.


1982 ◽  
Vol 50 (2) ◽  
pp. 241-245 ◽  
Author(s):  
Judith G. Szelényi ◽  
Emilia Bartha ◽  
Susan R. Hollán

1978 ◽  
Vol 188 (2) ◽  
pp. 348-358 ◽  
Author(s):  
James K. Stoops ◽  
Michael J. Arslanian ◽  
Kirk C. Aune ◽  
Salih J. Wakil

PEDIATRICS ◽  
1959 ◽  
Vol 24 (3) ◽  
pp. 360-361
Author(s):  
SAMUEL P. BESSMAN

THE MEASUREMENT of enzyme activity of serum as an indicator of disease has a long history in medicine. In the past, it has been the aim of the designers of these methods to make them as specific as possible for assay of an enzyme characteristic of a particular system or group of similar organs. Examples of these venerable tests are those for amylase, acid phosphatase, alkaline phosphatase and choline esterase in the serum. Warburg made the first departure from this specificity by demonstrating that the activity of triosephosphate dehydrogenase in the serum of animals with cancer was much greater than that of controls. This test was partially specific, for as Warburg had earlier shown, the glycolytic activity of tumors is much greater than that of normal tissues. The non-specific approach became extreme with the introduction of the measurement of the glutamic-oxalacetic transaminase reaction in the diagnosis of acute coronary disease.


Sign in / Sign up

Export Citation Format

Share Document