scholarly journals The ATP Receptors P2X7 and P2X4 Modulate High Glucose and Palmitate-Induced Inflammatory Responses in Endothelial Cells

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0125111 ◽  
Author(s):  
Ramasri Sathanoori ◽  
Karl Swärd ◽  
Björn Olde ◽  
David Erlinge
PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0133346 ◽  
Author(s):  
Ramasri Sathanoori ◽  
Karl Swärd ◽  
Björn Olde ◽  
David Erlinge

2020 ◽  
Vol 48 (01) ◽  
pp. 91-105
Author(s):  
Li-Yen Huang ◽  
I-Chuan Yen ◽  
Wei-Cheng Tsai ◽  
Shih-Yu Lee

Rhodiola crenulata, a popular folk medicine for anti-altitude sickness in Tibet, has been shown to have protective effects against high glucose (HG)-induced endothelial cell dysfunction in human umbilical vein endothelial cells (HUVECs). However, its mechanisms of action are unclear. Here, we aimed to examine the effects and the mechanisms of action of Rhodiola crenulata extract (RCE) on matrix metalloproteinases (MMPs) and inflammatory responses under HG conditions. HUVECs were pretreated with RCE or untreated and then exposed to 33[Formula: see text]mM glucose medium for 24[Formula: see text]h. The levels of oxidative stress markers, MMPs, endogenous tissue inhibitors of MMPs (TIMPs), and adhesion molecules were determined. Zymography assays were also carried out. We found that RCE significantly decreased HG-induced increases in reactive oxygen species (ROS) and activation of MAPK and NF-[Formula: see text]B pathways. In addition, RCE not only significantly reduced the expression and activities of MMPs but also upregulated TIMP protein levels. Consistently, HG-induced activation of the toll-like receptor 4 (TLR4)/myeloid differentiation primary response protein (MyD88) signaling pathway, intracellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), and high mobility group box 1 (HMGB1) as well as endothelial cell apoptosis was inhibited by RCE treatment. RCE exerts protective effects on endothelial cells against HG insult, partially by suppressing the HMGB1/TLR4 axis. These findings indicate that Rhodiola crenulata may be a potential therapeutic agent for diabetes-associated vascular diseases.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Youde Jiang ◽  
Li Liu ◽  
Elizabeth Curtiss ◽  
Jena J. Steinle

Inflammation is an important component of diabetic retinal damage. We previously reported that a novelβ-adrenergic receptor agonist, Compound 49b, reduced Toll-like receptor 4 (TLR4) signaling in retinal endothelial cells (REC) grown in high glucose. Others reported that TLR4 activates high-mobility group box 1 (HMGB1), which has been associated with the NOD-like receptor 3 (NLRP3) inflammasome. Thus, we hypothesized that Epac1, a downstream mediator ofβ-adrenergic receptors, would block TLR4/HMGB1-mediated stimulation of the NLRP3 inflammasome, leading to reduced cleavage of caspase-1 and interleukin-1 beta (IL-1β). We generated vascular specific conditional knockout mice for Epac1 and used REC grown in normal and high glucose treated with an Epac1 agonist and/or NLRP3 siRNA. Protein analyses were done for Epac1, TLR4, HMGB1, NLRP3, cleaved caspase-1, and IL-1β. Loss of Epac1 in the mouse retinal vasculature significantly increased all of the inflammatory proteins. Epac1 effectively reduced high glucose-induced increases in TLR4, HMGB1, cleaved caspase-1, and IL-1βin REC. Taken together, the data suggest that Epac1 reduces formation of the NLRP3 inflammasome to reduce inflammatory responses in the retinal vasculature.


Diabetes ◽  
1995 ◽  
Vol 44 (11) ◽  
pp. 1323-1327 ◽  
Author(s):  
S. M. Baumgartner-Parzer ◽  
L. Wagner ◽  
M. Pettermann ◽  
J. Grillari ◽  
A. Gessl ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. e002085
Author(s):  
Yuan Wei ◽  
Suwen Bai ◽  
YanHeng Yao ◽  
Wenxuan Hou ◽  
Junwei Zhu ◽  
...  

IntroductionDiabetes-associated endothelial barrier function impairment might be linked to disturbances in Ca2+ homeostasis. To study the role and molecular mechanism of Orais–vascular endothelial (VE)-cadherin signaling complex and its downstream signaling pathway in diabetic endothelial injury using mouse aortic endothelial cells (MAECs).Research design and methodsThe activity of store-operated Ca2+ entry (SOCE) was detected by calcium imaging after 7 days of high-glucose (HG) or normal-glucose (NG) exposure, the expression levels of Orais after HG treatment was detected by western blot analysis. The effect of HG exposure on the expression of phosphorylated (p)-VE-cadherin and VE-cadherin on cell membrane was observed by immunofluorescence assay. HG-induced transendothelial electrical resistance was examined in vitro after MAECs were cultured in HG medium. FD-20 permeability was tested in monolayer aortic endothelial cells through transwell permeability assay. The interactions between Orais and VE-cadherin were detected by co-immunoprecipitation and immunofluorescence technologies. Immunohistochemical experiment was used to detect the expression changes of Orais, VE-cadherin and p-VE-cadherin in aortic endothelium of mice with diabetes.Results(1) The expression levels of Orais and activity of SOCE were significantly increased in MAECs cultured in HG for 7 days. (2) In MAECs cultured in HG for 7 days, the ratio of p-VE-cadherin to VE-cadherin expressed on the cell membrane and the FD-20 permeability in monolayer endothelial cells increased, indicating that intercellular permeability increased. (3) Orais and VE-cadherin can interact and enhance the interaction ratio through HG stimulation. (4) In MAECs cultured with HG, the SOCE activator ATP enhanced the expression level of p-VE-cadherin, and the SOCE inhibitor BTP2 decreased the expression level of p-VE-cadherin. (5) Significantly increased expression of p-VE-cadherin and Orais in the aortic endothelium of mice with diabetes.ConclusionHG exposure stimulated increased expression of Orais in endothelial cells, and increased VE-cadherin phosphorylation through Orais–VE-cadherin complex and a series of downstream signaling pathways, resulting in disruption of endothelial cell junctions and initiation of atherosclerosis.


2021 ◽  
Vol 394 (10) ◽  
pp. 2129-2139
Author(s):  
Tokiko Suzuki ◽  
Shigeyuki Yamashita ◽  
Kohshi Hattori ◽  
Naoyuki Matsuda ◽  
Yuichi Hattori

2021 ◽  
Vol 22 (5) ◽  
pp. 2381
Author(s):  
Hui-Yung Song ◽  
Yi-Ping Yang ◽  
Yueh Chien ◽  
Wei-Yi Lai ◽  
Yi-Ying Lin ◽  
...  

The late-onset type of Fabry disease (FD) with GLA IVS4 + 919G > A mutation has been shown to lead to cardiovascular dysfunctions. In order to eliminate variations in other aspects of the genetic background, we established the isogenic control of induced pluripotent stem cells (iPSCs) for the identification of the pathogenetic factors for FD phenotypes through CRISPR/Cas9 genomic editing. We adopted droplet digital PCR (ddPCR) to efficiently capture mutational events, thus enabling isolation of the corrected FD from FD-iPSCs. Both of these exhibited the characteristics of pluripotency and phenotypic plasticity, and they can be differentiated into endothelial cells (ECs). We demonstrated the phenotypic abnormalities in FD iPSC-derived ECs (FD-ECs), including intracellular Gb3 accumulation, autophagic flux impairment, and reactive oxygen species (ROS) production, and these abnormalities were rescued in isogenic control iPSC-derived ECs (corrected FD-ECs). Microarray profiling revealed that corrected FD-derived endothelial cells reversed the enrichment of genes in the pro-inflammatory pathway and validated the downregulation of NF-κB and the MAPK signaling pathway. Our findings highlighted the critical role of ECs in FD-associated vascular dysfunctions by establishing a reliable isogenic control and providing information on potential cellular targets to reduce the morbidity and mortality of FD patients with vascular complications.


2021 ◽  
Vol 26 (1) ◽  
pp. 17-24
Author(s):  
Weijie Cai ◽  
Musha Hamushan ◽  
Changli Zhao ◽  
Pengfei Cheng ◽  
Wanrun Zhong ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3174
Author(s):  
Nhung Quynh Do ◽  
Shengdao Zheng ◽  
Bom Park ◽  
Quynh T. N. Nguyen ◽  
Bo-Ram Choi ◽  
...  

Myrciaria dubia (HBK) McVaugh (camu-camu) belongs to the family Myrtaceae. Although camu-camu has received a great deal of attention for its potential pharmacological activities, there is little information on the anti-oxidative stress and anti-inflammatory effects of camu-camu fruit in skin diseases. In the present study, we investigated the preventative effect of 70% ethanol camu-camu fruit extract against high glucose-induced human keratinocytes. High glucose-induced overproduction of reactive oxygen species (ROS) was inhibited by camu-camu fruit treatment. In response to ROS reduction, camu-camu fruit modulated the mitogen-activated protein kinases (MAPK)/activator protein-1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NFAT) signaling pathways related to inflammation by downregulating the expression of proinflammatory cytokines and chemokines. Furthermore, camu-camu fruit treatment activated the expression of nuclear factor E2-related factor 2 (Nrf2) and subsequently increased the NAD(P)H:quinone oxidoreductase1 (NQO1) expression to protect keratinocytes against high-glucose-induced oxidative stress. These results indicate that camu-camu fruit is a promising material for preventing oxidative stress and skin inflammation induced by high glucose level.


Sign in / Sign up

Export Citation Format

Share Document