scholarly journals Reversal of the Inflammatory Responses in Fabry Patient iPSC-Derived Cardiovascular Endothelial Cells by CRISPR/Cas9-Corrected Mutation

2021 ◽  
Vol 22 (5) ◽  
pp. 2381
Author(s):  
Hui-Yung Song ◽  
Yi-Ping Yang ◽  
Yueh Chien ◽  
Wei-Yi Lai ◽  
Yi-Ying Lin ◽  
...  

The late-onset type of Fabry disease (FD) with GLA IVS4 + 919G > A mutation has been shown to lead to cardiovascular dysfunctions. In order to eliminate variations in other aspects of the genetic background, we established the isogenic control of induced pluripotent stem cells (iPSCs) for the identification of the pathogenetic factors for FD phenotypes through CRISPR/Cas9 genomic editing. We adopted droplet digital PCR (ddPCR) to efficiently capture mutational events, thus enabling isolation of the corrected FD from FD-iPSCs. Both of these exhibited the characteristics of pluripotency and phenotypic plasticity, and they can be differentiated into endothelial cells (ECs). We demonstrated the phenotypic abnormalities in FD iPSC-derived ECs (FD-ECs), including intracellular Gb3 accumulation, autophagic flux impairment, and reactive oxygen species (ROS) production, and these abnormalities were rescued in isogenic control iPSC-derived ECs (corrected FD-ECs). Microarray profiling revealed that corrected FD-derived endothelial cells reversed the enrichment of genes in the pro-inflammatory pathway and validated the downregulation of NF-κB and the MAPK signaling pathway. Our findings highlighted the critical role of ECs in FD-associated vascular dysfunctions by establishing a reliable isogenic control and providing information on potential cellular targets to reduce the morbidity and mortality of FD patients with vascular complications.

2021 ◽  
Vol 22 (15) ◽  
pp. 7856
Author(s):  
Sang Min Lee ◽  
Kyung-No Son ◽  
Dhara Shah ◽  
Marwan Ali ◽  
Arun Balasubramaniam ◽  
...  

Macrophages play a critical role in the inflammatory response to environmental triggers, such as lipopolysaccharide (LPS). Inflammatory signaling through macrophages and the innate immune system are increasingly recognized as important contributors to multiple acute and chronic disease processes. Nitric oxide (NO) is a free radical that plays an important role in immune and inflammatory responses as an important intercellular messenger. In addition, NO has an important role in inflammatory responses in mucosal environments such as the ocular surface. Histatin peptides are well-established antimicrobial and wound healing agents. These peptides are important in multiple biological systems, playing roles in responses to the environment and immunomodulation. Given the importance of macrophages in responses to environmental triggers and pathogens, we investigated the effect of histatin-1 (Hst1) on LPS-induced inflammatory responses and the underlying molecular mechanisms in RAW264.7 (RAW) macrophages. LPS-induced inflammatory signaling, NO production and cytokine production in macrophages were tested in response to treatment with Hst1. Hst1 application significantly reduced LPS-induced NO production, inflammatory cytokine production, and inflammatory signaling through the JNK and NF-kB pathways in RAW cells. These results demonstrate that Hst1 can inhibit LPS-induced inflammatory mediator production and MAPK signaling pathways in macrophages.


2021 ◽  
Author(s):  
Qiuhua Yang ◽  
Jiean Xu ◽  
Qian Ma ◽  
Zhiping Liu ◽  
Yaqi Zhou ◽  
...  

Overnutrition-induced endothelial inflammation plays a crucial role in high fat diet (HFD)-induced insulin resistance in animals. Endothelial glycolysis plays a critical role in endothelial inflammation and proliferation, but its role in diet-induced endothelial inflammation and subsequent insulin resistance has not been elucidated. PFKFB3 is a critical glycolytic regulator, and its increased expression has been observed in adipose vascular endothelium of C57BL/6J mice fed with HFD in vivo, and in palmitate (PA)-treated primary human adipose microvascular endothelial cells (HAMECs) in vitro. We generated mice with Pfkfb3 deficiency selective for endothelial cells to examine the effect of endothelial Pfkfb3 in endothelial inflammation in metabolic organs and in the development of HFD-induced insulin resistance. EC Pfkfb3-deficient mice exhibited mitigated HFD-induced insulin resistance, including decreased body weight and fat mass, improved glucose clearance and insulin sensitivity, and alleviated adiposity and hepatic steatosis. Mechanistically, cultured PFKFB3 knockdown HAMECs showed decreased NF-κB activation induced by PA, and consequent suppressed adhesion molecule expression and monocyte adhesion. Taken together, these results demonstrate that increased endothelial PFKFB3 expression promotes diet-induced inflammatory responses and subsequent insulin resistance, suggesting that endothelial metabolic alteration plays an important role in the development of insulin resistance.


2005 ◽  
Vol 73 (8) ◽  
pp. 4588-4595 ◽  
Author(s):  
C. C. Villar ◽  
H. Kashleva ◽  
A. P. Mitchell ◽  
A. Dongari-Bagtzoglou

ABSTRACT Candida albicans is a major opportunistic pathogen in immunocompromised patients. Production of proinflammatory cytokines by host cells in response to C. albicans plays a critical role in the activation of immune cells and final clearance of the organism. Invasion of host cells and tissues is considered one of the virulence attributes of this organism. The purpose of this study was to investigate whether the ability of C. albicans to invade host cells and tissues affects the proinflammatory cytokine responses by epithelial and endothelial cells. In this study we used the invasion-deficient RIM101 gene knockout strain DAY25, the highly invasive strain SC5314, and highly invasive RIM101-complemented strain DAY44 to compare the proinflammatory cytokine responses by oral epithelial or endothelial cells. Using a high-throughput approach, we found both qualitative and quantitative differences in the overall inflammatory responses to C. albicans strains with different invasive potentials. Overall, the highly invasive strains triggered higher levels of proinflammatory cytokines in host cells than the invasion-deficient mutant triggered. Significant differences compared to the attenuated mutant were noted in interleukin-1α (IL-1α), IL-6, IL-8, and tumor necrosis factor alpha in epithelial cells and in IL-6, growth-related oncogene, IL-8, monocyte chemoattractant protein 1 (MCP-1), MCP-2, and granulocyte colony-stimulating factor in endothelial cells. Our results indicate that invasion of host cells and tissues by C. albicans enhances the host proinflammatory response to infection.


2020 ◽  
Author(s):  
Pei-Suen Tsou ◽  
Pamela J. Palisoc ◽  
Mustafa Ali ◽  
Dinesh Khanna ◽  
Amr H Sawalha

AbstractSystemic sclerosis (SSc) is a rare autoimmune disease of unknown etiology characterized by widespread fibrosis and vascular complications. We utilized an assay for genome-wide chromatin accessibility to examine the chromatin landscape and transcription factor footprints in both endothelial cells (ECs) and fibroblasts isolated from healthy controls and patients with diffuse cutaneous (dc) SSc. In both cell types, chromatin accessibility was significantly reduced in SSc patients compared to healthy controls. Genes annotated from differentially accessible chromatin regions were enriched in pathways and gene ontologies involved in the nervous system. In addition, our data revealed that chromatin binding of transcription factors SNAI2, ETV2, and ELF1 was significantly increased in dcSSc ECs, while recruitment of RUNX1 and RUNX2 was enriched in dcSSc fibroblasts. Significant elevation of SNAI2 and ETV2 levels in dcSSc ECs, and RUNX2 levels in dcSSc fibroblasts were confirmed. Further analysis of publicly available ETV2-target genes suggests that ETV2 may play a critical role in EC dysfunction in dcSSc. Our data, for the first time, uncovered the chromatin blueprint of dcSSc ECs and fibroblasts, and suggested that neural-related characteristics of SSc ECs and fibroblasts could be a culprit for dysregulated angiogenesis and enhanced fibrosis. Targeting these pathways and the key transcription factors identified might present novel therapeutic approaches for this disease.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Athanasios Mavropoulos ◽  
Timoklia Orfanidou ◽  
Christos Liaskos ◽  
Daniel S. Smyk ◽  
Vassiliki Spyrou ◽  
...  

p38 mitogen activated protein kinase (p38 MAPK) signaling plays a major role in the modulation of immune-mediated inflammatory responses and therefore has been linked with several autoimmune diseases. The extent of the involvement of p38 MAPK in the pathogenesis of autoimmune blistering diseases has started to emerge, but whether it pays a critical role is a matter of debate. The activity of p38 MAPK has been studied in great detail during the loss of keratinocyte cell-cell adhesions and the development of pemphigus vulgaris (PV) and pemphigus foliaceus (PF). These diseases are characterised by autoantibodies targeting desmogleins (Dsg). Whether autoantibody-antigen interactions can trigger signaling pathways (such as p38 MAPK) that are tightly linked to the secretion of inflammatory mediators which may perpetuate inflammation and tissue damage in pemphigus remains unclear. Yet, the ability of p38 MAPK inhibitors to block activation of the proapoptotic proteinase caspase-3 suggests that the induction of apoptosis may be a consequence of p38 MAPK activation during acantholysis in PV. This review discusses the current evidence for the role of p38 MAPK in the pathogenesis of pemphigus. We will also present data relating to the targeting of these cascades as a means of therapeutic intervention.


2006 ◽  
Vol 291 (1) ◽  
pp. L91-L101 ◽  
Author(s):  
Jing Qiao ◽  
Fei Huang ◽  
Ram P. Naikawadi ◽  
Kwang S. Kim ◽  
Tamer Said ◽  
...  

Abundant evidence indicates that lysophosphatidylcholine (LPC) is proinflammatory and atherogenic. In the vascular endothelium, LPC increases permeability and expression of proinflammatory molecules such as adhesion molecules and cytokines. Yet, mechanisms by which LPC mediates these activities remain unclear and controversial. Recent evidence implicates involvement of a novel subfamily of G protein-coupled receptors (GPR4, G2A, OGR1, and TDAG8) that are sensitive to lysolipids and protons. We previously reported that one of these receptors, GPR4, is selectively expressed by a variety of endothelial cells and therefore hypothesize that the LPC-stimulated endothelial barrier dysfunction is mediated through GPR4. We developed a peptide Ab against GPR4 that detected GPR4 expression in transfected COS 7 cells and endogenous GPR4 expression in endothelial cells by Western blot. Endothelial cells infected with a retrovirus containing small interference RNA (siRNA) to GPR4 resulted in 40–50% decreased GPR4 expression, which corresponded with partial prevention of the LPC-induced 1) decrease in transendothelial resistance, 2) stress fiber formation, and 3) activation of RhoA. Furthermore, coexpression of the siRNA-GPR4 with a siRNA-resistant mutant GPR4 fully restored the LPC-induced resistance decrease. However, extracellular pH of <7.4 did not alter baseline or LPC-stimulated resistances. The results provide strong evidence that the LPC-mediated endothelial barrier dysfunction is regulated by endogenous GPR4 in endothelial cells and suggest that GPR4 may play a critical role in the inflammatory responses activated by LPC.


2009 ◽  
Vol 56 (3) ◽  
Author(s):  
Antoni Wrzosek

The endothelium is a highly active organ responsible for vasculatory tone and structure, angiogenesis, as well as hemodynamic, humoral, and inflammatory responses. The endothelium is constantly exposed to blood flow, sheer stress and tension. Endothelial cells are present as a vasculature in every tissue of the body and react to and control its microenvironment. A variety of ion channels are present in the plasma membranes of endothelial cells. These include potassium channels such as inwardly rectifying potassium (K(ir)) channels, voltage-dependent (K(v)) channels, ATP-regulated potassium (K(ATP)) channels and three types of calcium-activated potassium channels (K(Ca)), the large (BK(Ca)), intermediate (IK(Ca)), and small (SK(Ca)) -conductance potassium channels. Potassium current plays a critical role in action potentials in excitable cells, in setting the resting membrane potential, and in regulating neurotransmitter release. Mitochondrial isoforms of potassium channel contribute to the cytoprotection of endothelial cells. Prominent among potassium channels are families of calcium-activated potassium channels, and especially large-conductance calcium-activated potassium channels. The modulation of BK(Ca) channels, which are voltage- and calcium-dependent, has been intensively studied. The BK(Ca) channels show large expression dynamics in endothelial cells and tissue-specific expression of large numbers of alternatively spliced isoforms. In this review, a few examples of the modulatory mechanisms and physiological consequences of the expression of BK(Ca) channels are discussed in relation to potential targets for pharmacological intervention.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2006
Author(s):  
Ida Maria Westin ◽  
Andreas Viberg ◽  
Berit Byström ◽  
Irina Golovleva

Fuchs’ endothelial corneal dystrophy (FECD) is a bilateral disease of the cornea caused by gradual loss of corneal endothelial cells. Late-onset FECD is strongly associated with the CTG18.1 trinucleotide repeat expansion in the Transcription Factor 4 gene (TCF4), which forms RNA nuclear foci in corneal endothelial cells. To date, 46 RefSeq transcripts of TCF4 are annotated by the National Center of Biotechnology information (NCBI), however the effect of the CTG18.1 expansion on expression of alternative TCF4 transcripts is not completely understood. To investigate this, we used droplet digital PCR for quantification of TCF4 transcripts spanning over the CTG18.1 and transcripts with transcription start sites immediately downstream of the CTG18.1. TCF4 expression was analysed in corneal endothelium and in whole blood of FECD patients with and without CTG18.1 expansion, in non-FECD controls without CTG18.1 expansion, and in five additional control tissues. Subtle changes in transcription levels in groups of TCF4 transcripts were detected. In corneal endothelium, we found a lower fraction of transcripts spanning over the CTG18.1 tract compared to all other tissues investigated.


2018 ◽  
Author(s):  
Cheng Cheng ◽  
Kan Yang ◽  
Xinwei Wu ◽  
Yuefang Zhang ◽  
Shifang Shan ◽  
...  

SUMMARYAmyotrophic lateral sclerosis (ALS) is a late onset neurodegenerative disease with fast progression. Mutations of the CREST gene (also known as SS18L1) are identified in sporadic ALS patients. Whether CREST mutations may lead to ALS remained largely unclear. In this study, we showed that the ALS-related CREST-Q388X mutation exhibited loss-of-function effects. Importantly, we found that microglial activation were prevalent in CREST haploinsufficieny mice and the Q394X mice mimicking the human CREST Q388X mutation. Furthermore, we showed that both CREST haploinsufficieny and the Q394X mice displayed deficits in motor coordination. Finally, we identified the critical role of CREST-BRG1 complex in repressing the expression of immune-related cytokines including Ccl2 and Cxcl10 in neurons, via histone deacetylation, providing the molecular mechanisms underlying inflammatory responses lack of CREST. These findings indicate that elevated inflammatory responses in a subset of ALS may be caused by neuron-derived factors, suggesting potential therapeutic methods through inflammation pathways.In BriefCheng et al. discovered that neuronal loss of CREST reduces the protein level of FUS, de-represses the transcriptional inhibition of chemokine genes which in turn causes microglial activation and proinflammation, and ultimately leads to axonal degeneration of motor neurons and impairment of locomotion.


2012 ◽  
Vol 303 (4) ◽  
pp. L279-L285 ◽  
Author(s):  
Weiguo Chen ◽  
Saad Sammani ◽  
Sumegha Mitra ◽  
Shwu Fan Ma ◽  
Joe G. N. Garcia ◽  
...  

The statins are a class of 3-hydroxy-3-methylglutaryl-coenzyme A-reductase inhibitors that are recognized to have pleiotropic properties. We previously reported the attenuation of LPS-induced murine acute lung injury (ALI) by simvastatin in vivo and identified relevant effects of simvastatin on endothelial cell (EC) signaling, activation, and barrier function in vitro. In particular, simvastatin induces the upregulation of integrin-β4, which in turn inhibits EC inflammatory responses via attenuation of MAPK signaling. The role of integrin-β4 in murine ALI protection by simvastatin, however, is unknown. We initially confirmed a time- and dose-dependent effect of simvastatin on increased integrin-β4 mRNA expression in human lung EC with peak protein expression evident at 16 h. Subsequently, reciprocal immunoprecipitation demonstrated an attenuation of LPS-induced integrin-β4 tyrosine phosphorylation by simvastatin (5 μM, 16 h). Increased expression of EC inflammatory cytokines [IL-6, IL-8, monocyte chemoattractant protein (MCP)-1, regulated on activation normal T cell expressed and secreted (RANTES)] by LPS (500 ng/ml, 4 h) was also significantly attenuated by simvastatin pretreatment (5 μM, 16 h), but this effect was reversed by cotreatment with an integrin-β4-blocking antibody. Finally, although simvastatin (20 mg/kg) conferred significant protection in murine ALI as evidenced by decreased bronchoalveolar lavage fluid cell counts, protein, inflammatory cytokines (IL-6, IL-1β, MCP-1, RANTES), decreased Evans blue dye albumin extravasation in lung tissue, and changes on lung histology, these effects were reversed by the integrin-β4-blocking antibody (IV, 1 mg/kg, 2 h before LPS). These findings support integrin-β4 as an important mediator of ALI protection by simvastatin and implicate signaling by integrin-β4 as a novel therapeutic target in patients with ALI.


Sign in / Sign up

Export Citation Format

Share Document