scholarly journals Climate Tolerances and Habitat Requirements Jointly Shape the Elevational Distribution of the American Pika (Ochotona princeps), with Implications for Climate Change Effects

PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0131082 ◽  
Author(s):  
Leah H. Yandow ◽  
Anna D. Chalfoun ◽  
Daniel F. Doak
2015 ◽  
Vol 129 (3) ◽  
pp. 254
Author(s):  
Christopher C. Shank

The American Pika (Ochotona princeps) is vulnerable to climate change as a result of its dependence on cool, moist conditions. Most research on climatic determinants of American Pika distribution has been done in the United States where conditions are different from those in the higher-latitude pika ranges of the Canadian Rockies. I examined recent (1980–2009) and future (2050s and 2080s) average and maximum mean summer temperatures for 114 current American Pika locations in Alberta to assess whether future conditions are likely to place these animals at risk. At all current sites, mean summer temperatures (MSTs) in the 2050s are expected to be below that chosen by the United States Fish and Wildlife Service as a threshold for at-risk status of O. princeps. By the 2050s, most current American Pika locations have sufficient elevation within 5 km to allow individuals to migrate vertically to reach habitat with MST similar to that of their current location. Even in the 2080s, almost all current sites have sufficient elevation within 5 km to maintain extreme single-year and average MSTs lower than the highest values recorded at those sites in the recent past (13.9°C and 12.5°C respectively). However, by the 2080s under an extreme greenhouse gas emissions scenario, only 34% of current pika sites will allow for such migration. Although considerable uncertainty remains, particularly with respect to availability of habitat, these results suggest that American Pika populations in Alberta will likely be capable of persisting throughout this century, although their survival will depend increasingly on successful vertical migration.


2020 ◽  
Author(s):  
Andrew T Smith

Abstract The American pika (Ochotona princeps) is commonly perceived as a species that is at high risk of extinction due to climate change. The purpose of this review is two-fold: to evaluate the claim that climate change is threatening pikas with extinction, and to summarize the conservation status of the American pika. Most American pikas inhabit major cordilleras, such as the Rocky Mountain, Sierra Nevada, and Cascade ranges. Occupancy of potential pika habitat in these ranges is uniformly high and no discernible climate signal has been found that discriminates between the many occupied and relatively few unoccupied sites that have been recently surveyed. Pikas therefore are thriving across most of their range. The story differs in more marginal parts of the species range, primarily across the Great Basin, where a higher percentage of available habitat is unoccupied. A comprehensive review of Great Basin pikas revealed that occupied sites, sites of recent extirpation, and old sites, were regularly found within the same geographic and climatic space as extant sites, and suggested that pikas in the Great Basin tolerated a broader set of habitat and climatic conditions than previously understood. Studies of a small subset of extirpated sites in the Great Basin and in California found that climate variables (most notably measures of hot temperature) were associated more often with extirpated sites than occupied sites. Importantly, upward contraction of the lower elevation boundary also was found at some sites. However, models that incorporated variables other than climate (such as availability of upslope talus habitat) often were better predictors of site persistence. Many extirpations occurred on small habitat patches, which were subject to stochastic extinction, as informed by a long-term pika metapopulation study in Bodie, California. In addition, several sites may have been compromised by cattle grazing or other anthropogenic factors. In contrast, several low, hot sites (Bodie, Mono Craters, Craters of the Moon National Monument and Preserve, Lava Beds National Monument, Columbia River Gorge) retain active pika populations, demonstrating the adaptive capacity and resilience of pikas in response to adverse environmental conditions. Pikas cope with warm temperatures by retreating into cool interstices of their talus habitat and augment their restricted daytime foraging with nocturnal activity. Pikas exhibit significant flexibility in their foraging tactics and are highly selective in their choice of available vegetation. The trait that places pikas at greatest risk from climate change is their poor dispersal capability. Dispersal is more restricted in hotter environments, and isolated low-elevation sites that become extirpated are unlikely to be recolonized in a warming climate. The narrative that American pikas are going extinct appears to be an overreach. Pikas are doing well across most of their range, but there are limited, low-elevation losses that are likely to be permanent in what is currently marginal pika habitat. The resilience of pikas in the face of climate change, and their ability or inability to persist in marginal, hot environments, will continue to contribute to our understanding of the impact of climate change on individual species.


2016 ◽  
Vol 39 ◽  
pp. 89-92 ◽  
Author(s):  
Luca Alberti ◽  
Martino Cantone ◽  
Loris Colombo ◽  
Gabriele Oberto ◽  
Ivana La Licata

2012 ◽  
Author(s):  
Ronald Filadelfo ◽  
Jonathon Mintz ◽  
Daniel Carvell ◽  
Alan Marcus

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Sookyung Shin ◽  
Jung-Hyun Kim ◽  
Ji-Hee Dang ◽  
In-Soon Seo ◽  
Byoung Yoon Lee

AbstractThe climate is changing rapidly, and this may pose a major threat to global biodiversity. One of the most distinctive consequences of climate change is the poleward and/or upward shift of species distribution ranges associated with increasing temperatures, resulting in a change of species composition and community structure in the forest ecosystems. The Baekdudaegan mountain range connects most forests from the lowland to the subalpine zone in South Korea and is therefore recognized as one of the most important biodiversity hotspots. This study was conducted to understand the distribution range of vascular plants along elevational gradients through field surveys in the six national parks of the Baekdudaegan mountain range. We identified the upper and lower distribution limits of a total of 873 taxa of vascular plants with 117 families, 418 genera, 793 species, 14 subspecies, 62 varieties, two forms, and two hybrids. A total of 12 conifers were recorded along the elevational gradient. The distribution ranges of Abies koreana, Picea jezoensis, Pinus pumila, and Thuja koraiensis were limited to over 1000 m above sea level. We also identified 21 broad-leaved trees in the subalpine zone. A total of 45 Korean endemic plant species were observed, and of these, 15 taxa (including Aconitum chiisanense and Hanabusaya asiatica) showed a narrow distribution range in the subalpine zone. Our study provides valuable information on the current elevational distribution ranges of vascular plants in the six national parks of South Korea, which could serve as a baseline for vertical shifts under future climate change.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1819
Author(s):  
Eleni S. Bekri ◽  
Polychronis Economou ◽  
Panayotis C. Yannopoulos ◽  
Alexander C. Demetracopoulos

Freshwater resources are limited and seasonally and spatially unevenly distributed. Thus, in water resources management plans, storage reservoirs play a vital role in safeguarding drinking, irrigation, hydropower and livestock water supply. In the last decades, the dams’ negative effects, such as fragmentation of water flow and sediment transport, are considered in decision-making, for achieving an optimal balance between human needs and healthy riverine and coastal ecosystems. Currently, operation of existing reservoirs is challenged by increasing water demand, climate change effects and active storage reduction due to sediment deposition, jeopardizing their supply capacity. This paper proposes a methodological framework to reassess supply capacity and management resilience for an existing reservoir under these challenges. Future projections are derived by plausible climate scenarios and global climate models and by stochastic simulation of historic data. An alternative basic reservoir management scenario with a very low exceedance probability is derived. Excess water volumes are investigated under a probabilistic prism for enabling multiple-purpose water demands. Finally, this method is showcased to the Ladhon Reservoir (Greece). The probable total benefit from water allocated to the various water uses is estimated to assist decision makers in examining the tradeoffs between the probable additional benefit and risk of exceedance.


Sign in / Sign up

Export Citation Format

Share Document