scholarly journals Cell-Substrate Interactions Feedback to Direct Cell Migration along or against Morphological Polarization

PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0133117 ◽  
Author(s):  
Girish Kumar ◽  
Chia-Chi Ho ◽  
Carlos C. Co
Author(s):  
Henry C. Wong ◽  
William C. Tang

Biological tissues are composed of cells that adhere to the extracellular matrix (ECM) via cell-surface integrin receptors that bind to specific proteins, such as fibronectin, embedded in the matrix. In this manner, the ECM functions as a structural support for the attached cells, and mechanical forces are able to be transmitted from the cell to the ECM and vice versa [1]. Cell migration, a process that is highly dependent on these mechanical interactions, is important for many normal biological processes and diseases that occur in the human body, which include embryonic development, immune response, would healing, and cancer invasion [2]. Though many continuum models of cell migration have been proposed, there is still a need for a model that can be used to quantitatively understand the mechanical factors that can influence the movement of a cell on a substrate. This would be invaluable to the research areas of tissue engineering as well as cancer metastasis. We utilized a finite element model to elucidate the mechanism of cell-substrate interactions for a cell that consistently migrates in a single direction. Our model follows the approach taken by Gracheva and Othmer [2], but we extended their model to describe two-dimensional plane strain behavior.


1987 ◽  
Vol 243 (3) ◽  
pp. 461-471 ◽  
Author(s):  
Karen Davenport Atnip ◽  
James T. Mahan ◽  
Donald J. Donaldson

Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xingang Zuo ◽  
Haolan Zhang ◽  
Tong Zhou ◽  
Yiyuan Duan ◽  
Hao Shou ◽  
...  

Cell migration plays a pivotal role in many pathological and physiological processes. So far, most of the studies have been focused on 2-dimensional cell adhesion and migration. Herein, the migration behaviors of cell spheroids in 3D hydrogels obtained by polymerization of methacrylated hyaluronic acid (HA-MA) and fibrinogen (Fg) with different ratios were studied. The Fg could be released to the medium gradually along with time prolongation, achieving the dynamic change of hydrogel structures and properties. Three types of cell spheroids, i.e., endothelial cell (EC), smooth muscle cell (SMC), and EC-SMC spheroids, were prepared with 10,000 cells in each, whose diameters were about 343, 108, and 224 μm, respectively. The composite hydrogels with an intermediate ratio of Fg allowed the fastest 3D migration of cell spheroids. The ECs-SMCs migrated longest up to 3200 μm at day 14, whereas the SMC spheroids migrated slowest with a distance of only ~400 μm at the same period of time. The addition of free RGD or anti-CD44 could significantly reduce the migration distance, revealing that the cell-substrate interactions take the major roles and the migration is mesenchymal dependent. Moreover, addition of anti-N-cadherin and MMP inhibitors also slowed down the migration rate, demonstrating that the degradation of hydrogels and cell-cell interactions are also largely involved in the cell migration. RT-PCR measurement showed that expression of genes related to cell adhesion and antiapoptosis, and angiogenesis was all upregulated in the EC-SMC spheroids than single EC or SMC spheroids, suggesting that the use of composite cell spheroids is more promising to promote cell-substrate interactions and maintenance of cell functions.


1999 ◽  
Vol 5 (S2) ◽  
pp. 398-399
Author(s):  
P. Sims ◽  
B. Todd ◽  
S. Eppell ◽  
T. Li ◽  
K. Park ◽  
...  

Adherent cells generally construct the immediate substrate upon which they reside. This may occur via synthesis and secretion of new materials and/or by rearrangement and modification of existing substrate. The response of adherent cell types to an existing substrate can be influenced by a number of factors which include both the chemical and physical nature of the substrate. Cell adhesion, proliferation, differentiation and death can all be substrate dependent. Much effort has been directed toward chemical modification of substrates to regulate one or more of the parameters noted above. A significant, but somewhat smaller, degree of attention has been paid to the effects of the topography and microtopography on the cell response to substrate materials. Studies to date strongly suggest the topography is a significant factor in cell-substrate interactions. As noted above, it is most probable that both the chemistry and the structure of a substrate simultaneously influence the cellular response. However we wished to determine, particularly for artificial substrates, the role which microtopography can play in cell-substrate interactions.


2010 ◽  
Vol 99 (12) ◽  
pp. 4028-4036 ◽  
Author(s):  
Victor Yashunsky ◽  
Vladislav Lirtsman ◽  
Michael Golosovsky ◽  
Dan Davidov ◽  
Benjamin Aroeti

2008 ◽  
Vol 22 (18n19) ◽  
pp. 3069-3081 ◽  
Author(s):  
SHAHAB FAGHIHI ◽  
HOJATOLLAH VALI ◽  
MARYAM TABRIZIAN

The aim of this study is to investigate the effect of atomic structure of polycrystalline materials on cell-substrate interactions. Samples are prepared from rods and sheets of Ti -6 Al -4 V substrates with predominately two distinct crystallographic orientations as well as nano-structured and annealed titanium fabricated through high-pressure torsion and heat treatment processes. The degree of preosteoblast attachment and rate of growth, which are regulated through the activity and interaction of proteins present in the extracellular matrix, are notably increased on the nano-structured titanium and substrate having predominant [Formula: see text] orientation. The improved cell activity is attributed to the nano-structured feature of these substrates consisting of ultra-fine crystals (< 50 nm) and specific atomic order of [Formula: see text] substrate which provide higher degree of surface wettability. These findings demonstrate the advantages of nano-structured titanium over the conventional and coated titanium implants, as both mechanical properties and cellular response are improved. Furthermore, crystal orientation of the substrates can influence cell responses and, therefore, substrate engineering can be used to improve and control cell-substrate interactions.


2015 ◽  
pp. 83-98
Author(s):  
Rebecca Urbano ◽  
Alisa Clyne

2018 ◽  
Vol 115 (11) ◽  
pp. 2764-2769 ◽  
Author(s):  
Kouki Abe ◽  
Hiroko Katsuno ◽  
Michinori Toriyama ◽  
Kentarou Baba ◽  
Tomoyuki Mori ◽  
...  

Chemical cues presented on the adhesive substrate direct cell migration, a process termed haptotaxis. To migrate, cells must generate traction forces upon the substrate. However, how cells probe substrate-bound cues and generate directional forces for migration remains unclear. Here, we show that the cell adhesion molecule (CAM) L1-CAM is involved in laminin-induced haptotaxis of axonal growth cones. L1-CAM underwent grip and slip on the substrate. The ratio of the grip state was higher on laminin than on the control substrate polylysine; this was accompanied by an increase in the traction force upon laminin. Our data suggest that the directional force for laminin-induced growth cone haptotaxis is generated by the grip and slip of L1-CAM on the substrates, which occur asymmetrically under the growth cone. This mechanism is distinct from the conventional cell signaling models for directional cell migration. We further show that this mechanism is disrupted in a human patient with L1-CAM syndrome, suffering corpus callosum agenesis and corticospinal tract hypoplasia.


Sign in / Sign up

Export Citation Format

Share Document