scholarly journals Adipose Tissue Dysfunction and Altered Systemic Amino Acid Metabolism Are Associated with Non-Alcoholic Fatty Liver Disease

PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0138889 ◽  
Author(s):  
Sulin Cheng ◽  
Petri Wiklund ◽  
Reija Autio ◽  
Ronald Borra ◽  
Xiaowei Ojanen ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nikolaj H. Schmidt ◽  
Pia Svendsen ◽  
Julián Albarrán-Juárez ◽  
Søren K. Moestrup ◽  
Jacob Fog Bentzon

AbstractNon-alcoholic fatty liver disease (NAFLD) is an increasingly prevalent condition that has been linked to high-fructose corn syrup consumption with induction of hepatic de novo lipogenesis (DNL) as the suggested central mechanism. Feeding diets very high in fructose (> 60%) rapidly induce several features of NAFLD in rodents, but similar diets have not yet been applied in larger animals, such as pigs. With the aim to develop a large animal NAFLD model, we analysed the effects of feeding a high-fructose (HF, 60% w/w) diet for four weeks to castrated male Danish Landrace-York-Duroc pigs. HF feeding upregulated expression of hepatic DNL proteins, but levels were low compared with adipose tissue. No steatosis or hepatocellular ballooning was seen on histopathological examination, and plasma levels of transaminases were similar between groups. Inflammatory infiltrates and the amount of connective tissue was slightly elevated in liver sections from fructose-fed pigs, which was corroborated by up-regulation of macrophage marker expression in liver homogenates. Supported by RNA-profiling, quantitative protein analysis, histopathological examination, and biochemistry, our data suggest that pigs, contrary to rodents and humans, are protected against fructose-induced steatosis by relying on adipose tissue rather than liver for DNL.


2006 ◽  
Vol 44 ◽  
pp. S263-S264
Author(s):  
G. Soardol ◽  
C. Pagano ◽  
D. Donnini ◽  
C. Pilone ◽  
L. Domenis ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Silvana Y. Romero-Zerbo ◽  
María García-Fernández ◽  
Vanesa Espinosa-Jiménez ◽  
Macarena Pozo-Morales ◽  
Alejandro Escamilla-Sánchez ◽  
...  

2020 ◽  
Vol 9 (12) ◽  
pp. 4049
Author(s):  
Katrine D. Galsgaard

A key criterion for the most common chronic liver disease—non-alcoholic fatty liver disease (NAFLD)—is an intrahepatic fat content above 5% in individuals who are not using steatogenic agents or having significant alcohol intake. Subjects with NAFLD have increased plasma concentrations of glucagon, and emerging evidence indicates that subjects with NAFLD may show hepatic glucagon resistance. For many years, glucagon has been thought of as the counterregulatory hormone to insulin with a primary function of increasing blood glucose concentrations and protecting against hypoglycemia. However, in recent years, glucagon has re-emerged as an important regulator of other metabolic processes including lipid and amino acid/protein metabolism. This review discusses the evidence that in NAFLD, hepatic glucagon resistance may result in a dysregulated lipid and amino acid/protein metabolism, leading to excess accumulation of fat, hyperglucagonemia, and increased oxidative stress contributing to the worsening/progression of NAFLD.


Sign in / Sign up

Export Citation Format

Share Document