scholarly journals Variable-Selection Emerges on Top in Empirical Comparison of Whole-Genome Complex-Trait Prediction Methods

PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0138903 ◽  
Author(s):  
David C. Haws ◽  
Irina Rish ◽  
Simon Teyssedre ◽  
Dan He ◽  
Aurelie C. Lozano ◽  
...  
2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Theo Meuwissen ◽  
Irene van den Berg ◽  
Mike Goddard

Abstract Background Whole-genome sequence (WGS) data are increasingly available on large numbers of individuals in animal and plant breeding and in human genetics through second-generation resequencing technologies, 1000 genomes projects, and large-scale genotype imputation from lower marker densities. Here, we present a computationally fast implementation of a variable selection genomic prediction method, that could handle WGS data on more than 35,000 individuals, test its accuracy for across-breed predictions and assess its quantitative trait locus (QTL) mapping precision. Methods The Monte Carlo Markov chain (MCMC) variable selection model (Bayes GC) fits simultaneously a genomic best linear unbiased prediction (GBLUP) term, i.e. a polygenic effect whose correlations are described by a genomic relationship matrix (G), and a Bayes C term, i.e. a set of single nucleotide polymorphisms (SNPs) with large effects selected by the model. Computational speed is improved by a Metropolis–Hastings sampling that directs computations to the SNPs, which are, a priori, most likely to be included into the model. Speed is also improved by running many relatively short MCMC chains. Memory requirements are reduced by storing the genotype matrix in binary form. The model was tested on a WGS dataset containing Holstein, Jersey and Australian Red cattle. The data contained 4,809,520 genotypes on 35,549 individuals together with their milk, fat and protein yields, and fat and protein percentage traits. Results The prediction accuracies of the Jersey individuals improved by 1.5% when using across-breed GBLUP compared to within-breed predictions. Using WGS instead of 600 k SNP-chip data yielded on average a 3% accuracy improvement for Australian Red cows. QTL were fine-mapped by locating the SNP with the highest posterior probability of being included in the model. Various QTL known from the literature were rediscovered, and a new SNP affecting milk production was discovered on chromosome 20 at 34.501126 Mb. Due to the high mapping precision, it was clear that many of the discovered QTL were the same across the five dairy traits. Conclusions Across-breed Bayes GC genomic prediction improved prediction accuracies compared to GBLUP. The combination of across-breed WGS data and Bayesian genomic prediction proved remarkably effective for the fine-mapping of QTL.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 222
Author(s):  
Juan C. Laria ◽  
M. Carmen Aguilera-Morillo ◽  
Enrique Álvarez ◽  
Rosa E. Lillo ◽  
Sara López-Taruella ◽  
...  

Over the last decade, regularized regression methods have offered alternatives for performing multi-marker analysis and feature selection in a whole genome context. The process of defining a list of genes that will characterize an expression profile remains unclear. It currently relies upon advanced statistics and can use an agnostic point of view or include some a priori knowledge, but overfitting remains a problem. This paper introduces a methodology to deal with the variable selection and model estimation problems in the high-dimensional set-up, which can be particularly useful in the whole genome context. Results are validated using simulated data and a real dataset from a triple-negative breast cancer study.


2020 ◽  
Author(s):  
Miguel Pérez-Enciso ◽  
Laura M. Zingaretti ◽  
Yuliaxis Ramayo-Caldas ◽  
Gustavo de los Campos

AbstractThe analysis and prediction of complex traits using microbiome data combined with host genomic information is a topic of utmost interest. However, numerous questions remain to be answered: How useful can the microbiome be for complex trait prediction? Are microbiability estimates reliable? Can the underlying biological links between the host’s genome, microbiome, and the phenome be recovered? Here, we address these issues by (i) developing a novel simulation strategy that uses real microbiome and genotype data as input, and (ii) proposing a variance-component approach which, in the spirit of mediation analyses, quantifies the proportion of phenotypic variance explained by genome and microbiome, and dissects it into direct and indirect effects. The proposed simulation approach can mimic a genetic link between the microbiome and SNP data via a permutation procedure that retains the distributional properties of the data. Results suggest that microbiome data could significantly improve phenotype prediction accuracy, irrespective of whether some abundances are under direct genetic control by the host or not. Overall, random-effects linear methods appear robust for variance components estimation, despite the highly leptokurtic distribution of microbiota abundances. Nevertheless, we observed that accuracy depends in part on the number of microorganisms’ taxa influencing the trait of interest. While we conclude that overall genome-microbiome-links can be characterized via variance components, we are less optimistic about the possibility of identifying the causative effects, i.e., individual SNPs affecting abundances; power at this level would require much larger sample sizes than the ones typically available for genome-microbiome-phenome data.Author summaryThe microbiome consists of the microorganisms that live in a particular environment, including those in our organism. There is consistent evidence that these communities play an important role in numerous traits of relevance, including disease susceptibility or feed efficiency. Moreover, it has been shown that the microbiome can be relatively stable throughout an individual’s life and that is affected by the host genome. These reasons have prompted numerous studies to determine whether and how the microbiome can be used for prediction of complex phenotypes, either using microbiome alone or in combination with host’s genome data. However, numerous questions remain to be answered such as the reliability of parameter estimates, or which is the underlying relationship between microbiome, genome, and phenotype. The few available empirical studies do not provide a clear answer to these problems. Here we address these issues by developing a novel simulation strategy and we show that, although the microbiome can significantly help in prediction, it will be difficult to retrieve the actual biological basis of interactions between the microbiome and the trait.


2018 ◽  
Vol 34 (10) ◽  
pp. 746-754 ◽  
Author(s):  
Gustavo de los Campos ◽  
Ana Ines Vazquez ◽  
Stephen Hsu ◽  
Louis Lello

Author(s):  
Jerome R Lon ◽  
Yunmeng Bai ◽  
Bingxu Zhong ◽  
Fuqaing Cai ◽  
Hongli Du

AbstractThe discovery of epitopes is helpful to the development of SARS-CoV-2 vaccine. The sequences of the surface protein of SARS-CoV-2 and its proximal sequences were obtained by BLAST, the sequences of the whole genome of SARS-CoV-2 were obtained from the GenBank. Based on the NCBI Reference Sequence: NC_045512.2, the conformational and linear B cell epitopes of the surface protein were predicted separately by various prediction methods. Furthermore, the conservation of the epitopes, the adaptability and other evolutionary characteristics were also analyzed. 7 epitopes were predicted, including 5 linear epitopes and 2 conformational epitopes, one of the linear and one of the conformational were coincide. The epitope D mutated easily, but the other epitopes were very conservative and the epitope C was the most conservative. It is worth mentioning that all of the 6 dominated epitopes were absolutely conservative in nearly 1000 SARS-CoV-2 genomes, and they deserved further study. The findings would facilitate the vaccine development, had the potential to be directly applied on the treatment in this disease, but also have the potential to prevent the possible threats caused by other types of coronavirus.


2017 ◽  
Author(s):  
Arthur Gilly ◽  
Lorraine Southam ◽  
Daniel Suveges ◽  
Karoline Kuchenbaecker ◽  
Rachel Moore ◽  
...  

AbstractMotivationVery low depth sequencing has been proposed as a cost-effective approach to capture low-frequency and rare variation in complex trait association studies. However, a full characterisation of the genotype quality and association power for very low depth sequencing designs is still lacking.ResultsWe perform cohort-wide whole genome sequencing (WGS) at low depth in 1,239 individuals (990 at 1x depth and 249 at 4x depth) from an isolated population, and establish a robust pipeline for calling and imputing very low depth WGS genotypes from standard bioinformatics tools. Using genotyping chip, whole-exome sequencing (WES, 75x depth) and high-depth (22x) WGS data in the same samples, we examine in detail the sensitivity of this approach, and show that imputed 1x WGS recapitulates 95.2% of variants found by imputed GWAS with an average minor allele concordance of 97% for common and low-frequency variants. In our study, 1x further allowed the discovery of 140,844 true low-frequency variants with 73% genotype concordance when compared to high-depth WGS data. Finally, using association results for 57 quantitative traits, we show that very low depth WGS is an efficient alternative to imputed GWAS chip designs, allowing the discovery of up to twice as many true association signals than the classical imputed GWAS design.Supplementary DataSupplementary Data are appended to this manuscript.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Louis Lello ◽  
Timothy G. Raben ◽  
Stephen D. H. Hsu

2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Miguel Pérez-Enciso ◽  
Laura M. Zingaretti ◽  
Yuliaxis Ramayo-Caldas ◽  
Gustavo de los Campos

Abstract Background Analysis and prediction of complex traits using microbiome data combined with host genomic information is a topic of utmost interest. However, numerous questions remain to be answered: how useful can the microbiome be for complex trait prediction? Are estimates of microbiability reliable? Can the underlying biological links between the host’s genome, microbiome, and phenome be recovered? Methods Here, we address these issues by (i) developing a novel simulation strategy that uses real microbiome and genotype data as inputs, and (ii) using variance-component approaches (Bayesian Reproducing Kernel Hilbert Space (RKHS) and Bayesian variable selection methods (Bayes C)) to quantify the proportion of phenotypic variance explained by the genome and the microbiome. The proposed simulation approach can mimic genetic links between the microbiome and genotype data by a permutation procedure that retains the distributional properties of the data. Results Using real genotype and rumen microbiota abundances from dairy cattle, simulation results suggest that microbiome data can significantly improve the accuracy of phenotype predictions, regardless of whether some microbiota abundances are under direct genetic control by the host or not. This improvement depends logically on the microbiome being stable over time. Overall, random-effects linear methods appear robust for variance components estimation, in spite of the typically highly leptokurtic distribution of microbiota abundances. The predictive performance of Bayes C was higher but more sensitive to the number of causative effects than RKHS. Accuracy with Bayes C depended, in part, on the number of microorganisms’ taxa that influence the phenotype. Conclusions While we conclude that, overall, genome-microbiome-links can be characterized using variance component estimates, we are less optimistic about the possibility of identifying the causative host genetic effects that affect microbiota abundances, which would require much larger sample sizes than are typically available for genome-microbiome-phenome studies. The R code to replicate the analyses is in https://github.com/miguelperezenciso/simubiome.


Sign in / Sign up

Export Citation Format

Share Document