scholarly journals Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC

PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0186759 ◽  
Author(s):  
Elizabeth Muir ◽  
Mansoor Raza ◽  
Clare Ellis ◽  
Emily Burnside ◽  
Fiona Love ◽  
...  
2010 ◽  
Vol 145 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Elizabeth M. Muir ◽  
Ian Fyfe ◽  
Sonya Gardiner ◽  
Li Li ◽  
Philippa Warren ◽  
...  

2021 ◽  
Author(s):  
Masataka Goto ◽  
Akio Abe ◽  
Tomoko Hanawa ◽  
Asaomi Kuwae

Bordetella bronchiseptica injects virulence proteins called effectors into host cells via a type III secretion system (T3SS) conserved among many Gram-negative bacteria. Small proteins called chaperones are required for stabilizing some T3SS components or localizing them to the T3SS machinery. In a previous study, we identified a chaperone-like protein named Bcr4 that regulates T3SS activity in B. bronchiseptica. Bcr4 does not show strong sequence similarity to well-studied T3SS proteins of other bacteria, and its function remains to be elucidated. Here, we investigated the mechanism by which Bcr4 controls T3SS activity. A pull-down assay revealed that Bcr4 interacts with BscI, based on its homology to other bacterial proteins, to be an inner rod protein of the T3SS machinery. A pull-down assay using truncated Bcr4 derivatives and secretion profiles of B. bronchiseptica producing truncated Bcr4 derivatives showed that the Bcr4 C-terminal region is necessary to interact with BscI and to activate the T3SS. Moreover, the deletion of BscI abolished the secretion of type III secreted proteins from B. bronchiseptica and the translocation of a cytotoxic effector into cultured mammalian cells. Finally, we showed that BscI is unstable in the absence of Bcr4. These results suggest that Bcr4 supports the construction of the T3SS machinery by stabilizing BscI. This is the first demonstration of a chaperone for the T3SS inner rod protein among the virulence bacteria possessing the T3SS.


2000 ◽  
Vol 68 (7) ◽  
pp. 4344-4348 ◽  
Author(s):  
Annick Gauthier ◽  
Myriam de Grado ◽  
B. Brett Finlay

ABSTRACT Enteropathogenic Escherichia coli (EPEC) inserts its receptor for intimate adherence (Tir) into host cell membranes by using a type III secretion system. Detergents are frequently used to fractionate infected host cells to investigate bacterial protein delivery into mammalian cells. In this study, we found that the Triton X-100-soluble membrane fraction from EPEC-infected HeLa cells was contaminated with bacterial proteins. We therefore applied a mechanical method of cell lysis and ultracentrifugation to fractionate infected HeLa cells to investigate the biology and biochemistry of Tir delivery and translocation. This method demonstrates that the translocation of Tir into the host cell membrane requires its transmembrane domains, but not tyrosine phosphorylation or binding to Tir's ligand, intimin.


1999 ◽  
Vol 1 (2) ◽  
pp. 85-91 ◽  
Author(s):  
J. Michael Lord ◽  
Daniel C. Smith ◽  
Lynne M. Roberts

Author(s):  
Dale E. McClendon ◽  
Paul N. Morgan ◽  
Bernard L. Soloff

It has been observed that minute amounts of venom from the brown recluse spider, Loxosceles reclusa, are capable of producing cytotoxic changes in cultures of certain mammalian cells (Morgan and Felton, 1965). Since there is little available information concerning the effect of venoms on susceptible cells, we have attempted to characterize, at the electron microscope level, the cytotoxic changes produced by the venom of this spider.Cultures of human epithelial carcinoma cells, strain HeLa, were initiated on sterile, carbon coated coverslips contained in Leighton tubes. Each culture was seeded with approximately 1x105 cells contained in 1.5 ml of a modified Eagle's minimum essential growth medium prepared in Hank's balanced salt solution. Cultures were incubated at 36° C. for three days prior to the addition of venom. The venom was collected from female brown recluse spiders and diluted in sterile saline. Protein determinations on the venom-were made according to the spectrophotometric method of Waddell (1956). Approximately 10 μg venom protein per ml of fresh medium was added to each culture after discarding the old growth medium. Control cultures were treated similarly, except that no venom was added. All cultures were reincubated at 36° C.


Author(s):  
J. P. Petrali ◽  
E. J. Donati ◽  
L. A. Sternberger

Specific contrast is conferred to subcellular antigen by applying purified antibodies, exhaustively labeled with uranium under immunospecific protection, to ultrathin sections. Use of Seligman’s principle of bridging osmium to metal via thiocarbohydrazide (TCH) intensifies specific contrast. Ultrathin sections of osmium-fixed materials were stained on the grid by application of 1) thiosemicarbazide (TSC), 2) unlabeled specific antiserum, 3) uranium-labeled anti-antibody and 4) TCH followed by reosmication. Antigens to be localized consisted of vaccinia antigen in infected HeLa cells, lysozyme in monocytes of patients with monocytic or monomyelocytic leukemia, and fibrinogen in the platelets of these leukemic patients. Control sections were stained with non-specific antiserum (E. coli).In the vaccinia-HeLa system, antigen was localized from 1 to 3 hours following infection, and was confined to degrading virus, the inner walls of numerous organelles, and other structures in cytoplasmic foci. Surrounding architecture and cellular mitochondria were unstained. 8 to 14 hours after infection, antigen was localized on the outer walls of the viral progeny, on cytoplasmic membranes, and free in the cytoplasm. Staining of endoplasmic reticulum was intense and focal early, and weak and diffuse late in infection.


Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


Author(s):  
G-A. Keller ◽  
S. J. Gould ◽  
S. Subramani ◽  
S. Krisans

Subcellular compartments within eukaryotic cells must each be supplied with unique sets of proteins that must be directed to, and translocated across one or more membranes of the target organelles. This transport is mediated by cis- acting targeting signals present within the imported proteins. The following is a chronological account of a series of experiments designed and carried out in an effort to understand how proteins are targeted to the peroxisomal compartment.-We demonstrated by immunocryoelectron microscopy that the enzyme luciferase is a peroxisomal enzyme in the firefly lantern. -We expressed the cDNA encoding firefly luciferase in mammalian cells and demonstrated by immunofluorescence that the enzyme was transported into the peroxisomes of the transfected cells. -Using deletions, linker insertions, and gene fusion to identify regions of luciferase involved in its transport to the peroxisomes, we demonstrated that luciferase contains a peroxisomal targeting signal (PTS) within its COOH-terminal twelve amino acid.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


Sign in / Sign up

Export Citation Format

Share Document