scholarly journals Reduction of Acquisition time using Partition of the sIgnal Decay in Spectroscopic Imaging technique (RAPID-SI)

PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0207015 ◽  
Author(s):  
Sourav Bhaduri ◽  
Patricia Clement ◽  
Eric Achten ◽  
Hacene Serrai
Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 336
Author(s):  
Atsushi Nakanishi ◽  
Shohei Hayashi ◽  
Hiroshi Satozono ◽  
Kazuue Fujita

We demonstrate spectroscopic imaging using a compact ultra-broadband terahertz semiconductor source with a high-power, mid-infrared quantum cascade laser. The electrically pumped monolithic source is based on intra-cavity difference-frequency generation and can be designed to achieve an ultra-broadband multi-mode terahertz emission spectrum extending from 1–4 THz without any external optical setup. Spectroscopic imaging was performed with three frequency bands, 2.0 THz, 2.5 THz and 3.0 THz, and as a result, this imaging technique clearly identified three different tablet components (polyethylene, D-histidine and DL-histidine). This method may be highly suitable for quality monitoring of pharmaceutical materials.


2011 ◽  
Vol 52 (9) ◽  
pp. 978-988 ◽  
Author(s):  
Hitoshi Nakayama ◽  
Tomoyuki Kawase ◽  
Kazuhiro Okuda ◽  
Larry F Wolff ◽  
Hiromasa Yoshie

Background In a previous study using a rodent osteosarcoma-grafted rat model, in which cell-dependent mineralization was previously demonstrated to proportionally increase with growth, we performed a quantitative analysis of mineral deposit formation using 99mTc-HMDP and found some weaknesses, such as longer acquisition time and narrower dynamic ranges (i.e. images easily saturated). The recently developed near-infrared (NIR) optical imaging technique is expected to non-invasively evaluate changes in living small animals in a quantitative manner. Purpose To test the feasibility of NIR imaging with a dual-channel system as a better alternative for bone scintigraphy by quantitatively evaluating mineralization along with the growth of osteosarcoma lesions in a mouse-xenograft model. Material and Methods The gross volume and mineralization of osteosarcoma lesions were evaluated in living mice simultaneously with dual-channels by NIR dye-labeled probes, 2-deoxyglucose (DG) and pamidronate (OS), respectively. To verify these quantitative data, retrieved osteosarcoma lesions were then subjected to ex-vivo imaging, weighing under wet conditions, microfocus-computed tomography (μCT) analysis, and histopathological examination. Results Because of less scattering and no anatomical overlapping, as generally shown, specific fluorescence signals targeted to the osteosarcoma lesions could be determined clearly by ex-vivo imaging. These data were well positively correlated with the in-vivo imaging data ( r > 0.8, P < 0.02). Other good to excellent correlations ( r > 0.8, P < 0.02) were observed between DG accumulation and tumor gross volume and between OS accumulation and mineralization volume. Conclusion This in-vivo NIR imaging technique using DG and OS is sensitive to the level to simultaneously detect and quantitatively evaluate the growth and mineralization occuring in this type of osteosarcoma lesions of living mice without either invasion or sacrifice. By possible mutual complementation, this dual imaging system might be useful for accurate diagnosis even in the presence of overlapping tissues.


2015 ◽  
Vol 14 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Yoshitaka BITO ◽  
Koji HIRATA ◽  
Toshihiko EBISU ◽  
Yuko KAWAI ◽  
Yosuke OTAKE ◽  
...  

1992 ◽  
Vol 25 (2) ◽  
pp. 349-354 ◽  
Author(s):  
Gadi Goelman ◽  
Glenn Walter ◽  
John S. Leigh

1989 ◽  
Vol 108 (4) ◽  
pp. 1209-1219 ◽  
Author(s):  
J B Rattner ◽  
D P Bazett-Jones

The structure of the kinetochore in thin section has been studied in the Indian muntjac by an electron spectroscopic imaging technique. This procedures allows the analysis of the distribution of phosphorus within the layers of the kinetochore. The results indicate that this element is a major component of both the inner and outer plates whereas it is largely absent in the middle plate and fibrous corona. The majority of the phosphorus is localized to a 30-nm fiber(s) that is woven through the layers of the kinetochore. The presence of phosphorus within this fiber, along with its morphological and biochemical features, indicates that it contains DNA. The fiber(s) occupies a major portion of the inner and outer plate where it forms a series of rows. It is rarely observed in the middle layer except where it passes between the inner and outer layers. The absence of structure in the middle plate suggests that it may represent a space rather than a plate that in turn may be related to the function of this region. The distribution of phosphorus within the kinetochore is neither altered by treatment with colcemid nor by the presence of microtubules at the kinetochore. Analysis of conventional micrographs of the kinetochore together with structural information obtained by electron spectroscopic imaging suggests that most microtubules insert and terminate between the rows of kinetochore fibers in the outer plate. However, some microtubules continue through the middle layer and terminate at the lower plate. The insertion of microtubules at different levels of the kinetochore may reflect the existence of functionally distinct microtubule classes. Electron spectroscopic imaging indicates that the microtubules associated with the kinetochore are phosphorylated.


Sign in / Sign up

Export Citation Format

Share Document