scholarly journals Coleoborers (Curculionidae: Scolytinae) in native and homogeneous systems of Brazil nut (Bertholletia excelsa bonpl.) in the Southern Amazon, Brazil

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0234287
Author(s):  
Marcus Henrique Martins e Silva ◽  
Juliana Garlet ◽  
Fernando Luiz Silva ◽  
Carla da Silva Paula

Brazil nut is one of the most important species of the Amazon due to its socioeconomic importance. Especially in homogeneous production systems, it may be susceptible to damage by wood-boring insects, as by the subfamily Scolytinae (Coleoptera: Curculionidae); thus, inadequate management conditions can cause economic damage. Therefore, the objective of the present work is to evaluate the occurrence of wood-boring insects (Curculionidae: Scolytinae) in native and homogeneous systems of Brazil nut in the Meridional Amazonian, Brazil. The study was conducted in three environments: Brazil Nut Native Anthropized, Homogeneous Brazil Nut and Brazil Nut Native Preserved. Twelve ethanol (96° GL) traps were installed in each environment during four sampling periods. The data were submitted to entomofaunistic analysis, Pearson´s correlation analysis and cluster analysis. A total of 2,243 individuals from 31 species were sampled, of which 23 were from the Brazil Nut Native Anthropized nut, 24 from the Homogeneous Brazil Nut and 26 from the Brazil Nut Native Preserved. Some species are restricted to a specific environment, such as Corthylocurus vernaculus Wood & Bright, 1992 and Xyleborus biconicus Eggers, 1928, in relation to Brazil Nut Native Anthropized, Xyleborus tolimanus Eggers, 1928 that occurred only in Homogeneous Brazil Nut and Corthylus antennarius Schedl and Hypothenus bolivianus Wood & Bright, 1992 verified only in Brazil Nut Native Preserved. In the faunistic analysis, we highlight the species Xyleborus affinis (Eichhoff, 1868), which was the most representative one in the three environments and a super-dominant species in all four sampling periods. Among the species considered indicator due to their high representativeness in the sampling, only Premnobius cavipennis Eichhoff, 1878 showed a significant negative correlation between its abundance and the minimum temperature for environments Homogeneous Brazil Nut and Brazil Nut Native Preserved. There was a greater similarity between the Brazil Nut Native Anthropized and the Brazil Nut Native Preserved; these two environments showed dissimilarity with the Homogeneous Brazil Nut. Monitoring wood-boring insects in Brazil nut agroecosystems is fundamental for the establishment of integrated pest management strategies.

2020 ◽  
Author(s):  
Marcus Henrique Martins e Silva ◽  
Juliana Garlet ◽  
Fernando Luis Silva ◽  
Carla da Silva Paula

AbstractBrazil nut is one of the most important species of the Amazon due to its socioeconomic importance. Especially in homogeneous production systems, it may be susceptible to damage by wood-boring insects, as by the subfamily Scolytinae (Coleoptera: Curculionidae); thus, inadequate management conditions can cause economic damage. Therefore, the objective of the present work is to evaluate the occurrence of wood-boring insects (Curculionidae: Scolytinae) in native and homogeneous systems of Brazil nut in the Meridional Amazonian, Brazil. The study was conducted in three environments: Conserved Native Planting nut, Anthropized Native Planting nut and Homogeneous Planting nut. Twelve ethanol traps were installed in each environment during four sampling periods. The data were submitted to entomofaunistic analysis, Pearson’s correlation analysis and cluster analysis. A total of 2,243 individuals from 31 species were sampled, of which 23 were from the Anthropized Native Planting nut, 24 from the Homogeneous Planting nut and 26 from the Conserved Native Planting nut. In the faunistic analysis, we highlight the species Xyleborus affinis (Eichhoff, 1868), which was the most representative one in the three environments and a super-dominant species in all four sampling periods. There was a greater similarity between the Anthropized Native Planting nut and the Conserved Native Planting nut; these two environments showed dissimilarity with the Homogeneous Planting nut. Monitoring coleoborers in Brazil nut agroecosystems is fundamental for the establishment of integrated pest management strategies.


2019 ◽  
Vol 446 (1-2) ◽  
pp. 163-177 ◽  
Author(s):  
Arlete S. Barneze ◽  
Jeanette Whitaker ◽  
Niall P. McNamara ◽  
Nicholas J. Ostle

Abstract Aims Grasslands are important agricultural production systems, where ecosystem functioning is affected by land management practices. Grass-legume mixtures are commonly cultivated to increase grassland productivity while reducing the need for nitrogen (N) fertiliser. However, little is known about the effect of this increase in productivity on greenhouse gas (GHG) emissions in grass-legume mixtures. The aim of this study was to investigate interactions between the proportion of legumes in grass-legume mixtures and N-fertiliser addition on productivity and GHG emissions. We tested the hypotheses that an increase in the relative proportion of legumes would increase plant productivity and decrease GHG emissions, and the magnitude of these effects would be reduced by N-fertiliser addition. Methods This was tested in a controlled environment mesocosm experiment with one grass and one legume species grown in mixtures in different proportions, with or without N-fertiliser. The effects on N cycling processes were assessed by measurement of above- and below-ground biomass, shoot N uptake, soil physico-chemical properties and GHG emissions. Results Above-ground productivity and shoot N uptake were greater in legume-grass mixtures compared to grass or legume monocultures, in fertilised and unfertilised soils. However, we found no effect of legume proportion on N2O emissions, total soil N or mineral-N in fertilised or unfertilised soils. Conclusions This study shows that the inclusion of legumes in grass-legume mixtures positively affected productivity, however N cycle were in the short-term unaffected and mainly affected by nitrogen fertilisation. Legumes can be used in grassland management strategies to mitigate climate change by reducing crop demand for N-fertilisers.


2006 ◽  
Vol 7 (1) ◽  
pp. 29
Author(s):  
S. N. Rampersad

Tomato production in Trinidad has suffered considerable losses in yield and fruit quality due to infections of hitherto surmised etiology. In order to develop strategies for controlling viral diseases in tomato, the relative distribution and incidence of seven viruses that commonly infect tomato were determined. Of the 362 samples tested, Potato yellow mosaic Trinidad virus (PYMTV) was found in every farm except two and was present at relatively high incidence throughout the country. Tobacco mosaic virus (TMV) and Tobacco etch virus (TEV) were found in fewer farms and at lower incidences while the other viruses were absent. Single infections of either virus were more common than double infections and multiple infections were rare but present. The results indicated that PYMTV is the predominant and most important viral pathogen in tomato production systems in Trinidad; however, begomovirus disease management strategies will also have to accommodate controls Accepted for publication 10 January 2006. Published 9 March 2006.


2018 ◽  
Vol 23 (11) ◽  
pp. 2087 ◽  
Author(s):  
Peng-Yu Jin ◽  
Lu Tian ◽  
Lei Chen ◽  
Xiao-Yue Hong

Understanding pest species composition and their geographic distribution of important spider mites is fundamental and indispensable to establish an integrated pest management program. From a long-term survey during 2008–2017 in mainland China, we found that Tetranychus truncatus was the most frequently sampled Tetranychus spider mite (48.5%), followed by T. pueraricola (21.2%), T. kanzawai (12.5%), T. urticae (red) (5.7%) and T. urticae (green) (4.5%). Among them, T. truncatus was the major mite pest in the north of China. T. kanzawai was the dominant species in the Middle and Lower Reaches of the Yangtze River Region and T. pueraricola was the most important species in the southwest region. Other common and serious pests include Amphitetranychus viennensis (6.8%) and Panonychus citri (3.8%). This pattern was largely different from that in 2002–2004, when T. urticae (green and red) was believed to be the most serious mite pest. The factors involved in the change of species composition are not clear and need more exploration. We suggested that the increasing corn planting range may be partly responsible for the conversion of dominant species from other spider mites to T. truncatus. Further research on the mechanisms underlying the change of dominant species will help develop integrated management strategies.


2018 ◽  
Vol 37 (3) ◽  
pp. 210-218
Author(s):  
Cansu Demir ◽  
Ülkü Yetiş ◽  
Kahraman Ünlü

Thermal power plants are of great environmental importance in terms of the huge amounts of wastes that they produce. Although there are process-wise differences among these energy production systems, they all depend on the logic of burning out a fuel and obtaining thermal energy to rotate the turbines. Depending on the process modification and the type of fuel burned, the wastes produced in each step of the overall process may change. In this study, the most expected process and non-process wastes stemming from different power generation processes have been identified and given their European Waste Codes. Giving priority to the waste minimization options for the most problematic wastes from thermal power plants, waste management strategies have been defined. In addition, by using the data collected from site visits, from the literature and provided by the Turkish Republic Ministry of Environment and Urbanization, waste generation factor ranges expressed in terms of kilogram of waste per energy produced annually (kg/MWh) have been estimated. As a result, the highest generation was found to be in fly ash (24–63 for imported coal, 200–270 for native coal), bottom ash (1.3–6 for imported coal, 42–87 for native coal) and the desulfurization wastes (7.3–32) produced in coal combustion power plants. The estimated waste generation factors carry an important role in that they aid the authorities to monitor the production wastes declared by the industries.


2014 ◽  
Vol 65 (7) ◽  
pp. 583 ◽  
Author(s):  
J. A. Kirkegaard ◽  
J. R. Hunt ◽  
T. M. McBeath ◽  
J. M. Lilley ◽  
A. Moore ◽  
...  

Improving the water-limited yield of dryland crops and farming systems has been an underpinning objective of research within the Australian grains industry since the concept was defined in the 1970s. Recent slowing in productivity growth has stimulated a search for new sources of improvement, but few previous research investments have been targeted on a national scale. In 2008, the Australian grains industry established the 5-year, AU$17.6 million, Water Use Efficiency (WUE) Initiative, which challenged growers and researchers to lift WUE of grain-based production systems by 10%. Sixteen regional grower research teams distributed across southern Australia (300–700 mm annual rainfall) proposed a range of agronomic management strategies to improve water-limited productivity. A coordinating project involving a team of agronomists, plant physiologists, soil scientists and system modellers was funded to provide consistent understanding and benchmarking of water-limited yield, experimental advice and assistance, integrating system science and modelling, and to play an integration and communication role. The 16 diverse regional project activities were organised into four themes related to the type of innovation pursued (integrating break-crops, managing summer fallows, managing in-season water-use, managing variable and constraining soils), and the important interactions between these at the farm-scale were explored and emphasised. At annual meetings, the teams compared the impacts of various management strategies across different regions, and the interactions from management combinations. Simulation studies provided predictions of both a priori outcomes that were tested experimentally and extrapolation of results across sites, seasons and up to the whole-farm scale. We demonstrated experimentally that potential exists to improve water productivity at paddock scale by levels well above the 10% target by better summer weed control (37–140%), inclusion of break crops (16–83%), earlier sowing of appropriate varieties (21–33%) and matching N supply to soil type (91% on deep sands). Capturing synergies from combinations of pre- and in-crop management could increase wheat yield at farm scale by 11–47%, and significant on-farm validation and adoption of some innovations has occurred during the Initiative. An ex post economic analysis of the Initiative estimated a benefit : cost ratio of 3.7 : 1, and an internal return on investment of 18.5%. We briefly review the structure and operation of the initiative and summarise some of the key strategies that emerged to improve WUE at paddock and farm-scale.


2021 ◽  
Vol 13 (1) ◽  
pp. 1616-1642
Author(s):  
Sai Kiran Kuntla

Abstract The repetitive and destructive nature of floods across the globe causes significant economic damage, loss of human lives, and leaves the people living in flood-prone areas with fear and insecurity. With enough literature projecting an increase in flood frequency, severity, and magnitude in the future, there is a clear need for effective flood management strategies and timely implementation. The earth observatory satellites of the European Space Agency’s Sentinel series, Sentinel-1, Sentinel-2, and Sentinel-3, have a great potential to combat these disastrous floods by their peerless surveillance capabilities that could assist in various phases of flood management. In this article, the technical specifications and operations of the microwave synthetic aperture radar (SAR) onboard Sentinel-1, optical sensors onboard Sentinel-2 (Multispectral Instrument) and Sentinel-3 (Ocean and Land Color Instrument), and SAR altimeter onboard Sentinel-3 are described. Moreover, the observational capabilities of these three satellites and how these observations can meet the needs of researchers and flood disaster managers are discussed in detail. Furthermore, we reviewed how these satellites carrying a range of technologies that provide a broad spectrum of earth observations stand out among their predecessors and have bought a step-change in flood monitoring, understanding, and management to mitigate their adverse effects. Finally, the study is concluded by highlighting the revolution this fleet of Sentinel satellites has brought in the flood management studies and applications.


2020 ◽  
Vol 11 (1) ◽  
pp. 054
Author(s):  
José Antonio De Miranda Lammoglia ◽  
Nilson Brandalise ◽  
Cecilia Toledo Hernandez

The scenario of global competitiveness demands more and more of the organizations the search for continuous improvement. For survival, in the face of adverse market conditions, modern production management strategies are essential to make production processes increasingly efficient, lean and sustainable, minimizing losses in their production systems. In this sense, when thinking about changes in production lines, in search of improvements in their process, criteria that provide Benefits, Opportunities, Costs and Risks (BOCR) should be considered. In this way, managers and executives should rely on tools and methods that allow them to guide their decisions in a clear way. The objective of this work is to apply a method of Decision Making with Multiple Criteria to the alternatives of investment projects in production lines in Lean Manufacturing concept. As a general result, it was possible to observe the applicability of the AHP BOCR method for the decision-making case involving several criteria and subcriteria for choosing the Lean investment project in the steel environment, the preferred alternative being the discontinuity of the production line 1 and the absorption of their respective production volume by production lines 2 and 3 through investments in them.


2009 ◽  
Vol 38 (1) ◽  
pp. 19-43 ◽  
Author(s):  
MARTIN SCHRÖDER

AbstractThis article argues that existing typologies on production and welfare regimes should be combined into a typology unifying the study of production and distribution in advanced capitalist countries. The article utilises a principal component and cluster analysis to show that such a typology indeed reflects the empirical diversity of countries. This is further illustrated by a brief literature review of different typologies. It is then shown how the integration of the two approaches helps to resolve problems addressed in the new literature on the varieties of capitalism approach, notably how welfare arrangements relate to production systems. Thereby, the relevance of an integrated typology for policy-makers in the fields of welfare and production will be illustrated. Lastly, some thoughts follow on how an integrated typology allows for a perspective that explains the development of various welfare and production regimes based on the common historical heritage of families of nations.


Sign in / Sign up

Export Citation Format

Share Document