scholarly journals Genome-wide pathway-based quantitative multiple phenotypes analysis

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0240910
Author(s):  
Yamin Deng ◽  
Shiman Wu ◽  
Huifang Fan

For complex diseases, genome-wide pathway association studies have become increasingly promising. Currently, however, pathway-based association analysis mainly focus on a single phenotype, which may insufficient to describe the complex diseases and physiological processes. This work proposes a combination model to evaluate the association between a pathway and multiple phenotypes and to reduce the run time based on asymptotic results. For a single phenotype, we propose a semi-supervised maximum kernel-based U-statistics (mSKU) method to assess the pathway-based association analysis. For multiple phenotypes, we propose the fisher combination function with dependent phenotypes (FC) to transform the p-values between the pathway and each marginal phenotype individually to achieve pathway-based multiple phenotypes analysis. With real data from the Alzheimer Disease Neuroimaging Initiative (ADNI) study and Human Liver Cohort (HLC) study, the FC-mSKU method allows us to specify which pathways are specific to a single phenotype or contribute to common genetic constructions of multiple phenotypes. If we only focus on single-phenotype tests, we may miss some findings for etiology studies. Through extensive simulation studies, the FC-mSKU method demonstrates its advantages compared with its counterparts.

2020 ◽  
Vol 10 (3) ◽  
pp. 945-949
Author(s):  
Shiqiang Cheng ◽  
Mei Ma ◽  
Lu Zhang ◽  
Li Liu ◽  
Bolun Cheng ◽  
...  

The etiology of many human complex diseases or traits involves interactions between chemicals and genes that regulate important physiological processes. It has been well documented that chemicals can contribute to disease development through affecting gene expression in vivo. In this study, we developed a flexible tool CGSEA for scanning the candidate chemicals associated with complex diseases or traits. CGSEA only need genome-wide summary level data, such as transcriptome-wide association studies (TWAS) and mRNA expression profiles. CGSEA was applied to the GWAS summaries of attention deficiency/hyperactive disorder, (ADHD), autism spectrum disorder (ASD) and cervical cancer. CGSEA identified several significant chemicals, which have been demonstrated to be involved in the development or treatment of ADHD, ASD and cervical cancer. The CGSEA program and user manual are available at https://github.com/ChengSQXJTU/CGSEA.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Xiaobo Guo ◽  
Zhifa Liu ◽  
Xueqin Wang ◽  
Heping Zhang

Many genetic association studies used single nucleotide polymorphisms (SNPs) data to identify genetic variants for complex diseases. Although SNP-based associations are most common in genome-wide association studies (GWAS), gene-based association analysis has received increasing attention in understanding genetic etiologies for complex diseases. While both methods have been used to analyze the same data, few genome-wide association studies compare the results or observe the connection between them. We performed a comprehensive analysis of the data from the Study of Addiction: Genetics and Environment (SAGE) and compared the results from the SNP-based and gene-based analyses. Our results suggest that the gene-based method complements the individual SNP-based analysis, and conceptually they are closely related. In terms of gene findings, our results validate many genes that were either reported from the analysis of the same dataset or based on animal studies for substance dependence.


2015 ◽  
Author(s):  
Hilary Kiyo Finucane ◽  
Brendan Bulik-Sullivan ◽  
Alexander Gusev ◽  
Gosia Trynka ◽  
Yakir Reshef ◽  
...  

Recent work has demonstrated that some functional categories of the genome contribute disproportionately to the heritability of complex diseases. Here, we analyze a broad set of functional elements, including cell-type-specific elements, to estimate their polygenic contributions to heritability in genome-wide association studies (GWAS) of 17 complex diseases and traits spanning a total of 1.3 million phenotype measurements. To enable this analysis, we introduce a new method for partitioning heritability from GWAS summary statistics while controlling for linked markers. This new method is computationally tractable at very large sample sizes, and leverages genome-wide information. Our results include a large enrichment of heritability in conserved regions across many traits; a very large immunological disease-specific enrichment of heritability in FANTOM5 enhancers; and many cell-type-specific enrichments including significant enrichment of central nervous system cell types in body mass index, age at menarche, educational attainment, and smoking behavior. These results demonstrate that GWAS can aid in understanding the biological basis of disease and provide direction for functional follow-up.


Genetics ◽  
2019 ◽  
Vol 213 (4) ◽  
pp. 1225-1236 ◽  
Author(s):  
Weimiao Wu ◽  
Zhong Wang ◽  
Ke Xu ◽  
Xinyu Zhang ◽  
Amei Amei ◽  
...  

Longitudinal phenotypes have been increasingly available in genome-wide association studies (GWAS) and electronic health record-based studies for identification of genetic variants that influence complex traits over time. For longitudinal binary data, there remain significant challenges in gene mapping, including misspecification of the model for phenotype distribution due to ascertainment. Here, we propose L-BRAT (Longitudinal Binary-trait Retrospective Association Test), a retrospective, generalized estimating equation-based method for genetic association analysis of longitudinal binary outcomes. We also develop RGMMAT, a retrospective, generalized linear mixed model-based association test. Both tests are retrospective score approaches in which genotypes are treated as random conditional on phenotype and covariates. They allow both static and time-varying covariates to be included in the analysis. Through simulations, we illustrated that retrospective association tests are robust to ascertainment and other types of phenotype model misspecification, and gain power over previous association methods. We applied L-BRAT and RGMMAT to a genome-wide association analysis of repeated measures of cocaine use in a longitudinal cohort. Pathway analysis implicated association with opioid signaling and axonal guidance signaling pathways. Lastly, we replicated important pathways in an independent cocaine dependence case-control GWAS. Our results illustrate that L-BRAT is able to detect important loci and pathways in a genome scan and to provide insights into genetic architecture of cocaine use.


2019 ◽  
Vol 15 ◽  
pp. 117693431986086
Author(s):  
Shan-Shan Dong ◽  
Yan Guo ◽  
Tie-Lin Yang

Genome-wide association studies (GWASs) have successfully identified thousands of susceptibility loci for human complex diseases. However, missing heritability is still a challenging problem. Considering most GWAS loci are located in regulatory elements, we recently developed a pipeline named functional disease-associated single-nucleotide polymorphisms (SNPs) prediction (FDSP), to predict novel susceptibility loci for complex diseases based on the interpretation of regulatory features and published GWAS results with machine learning. When applied to type 2 diabetes and hypertension, the predicted susceptibility loci by FDSP were proved to be capable of explaining additional heritability. In addition, potential target genes of the predicted positive SNPs were significantly enriched in disease-related pathways. Our results suggested that taking regulatory features into consideration might be a useful way to address the missing heritability problem. We hope FDSP could offer help for the identification of novel susceptibility loci for complex diseases.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1300 ◽  
Author(s):  
Elisabetta Manca ◽  
Alberto Cesarani ◽  
Giustino Gaspa ◽  
Silvia Sorbolini ◽  
Nicolò P.P. Macciotta ◽  
...  

Genome-wide association studies (GWAS) are traditionally carried out by using the single marker regression model that, if a small number of individuals is involved, often lead to very few associations. The Bayesian methods, such as BayesR, have obtained encouraging results when they are applied to the GWAS. However, these approaches, require that an a priori posterior inclusion probability threshold be fixed, thus arbitrarily affecting the obtained associations. To partially overcome these problems, a multivariate statistical algorithm was proposed. The basic idea was that animals with different phenotypic values of a specific trait share different allelic combinations for genes involved in its determinism. Three multivariate techniques were used to highlight the differences between the individuals assembled in high and low phenotype groups: the canonical discriminant analysis, the discriminant analysis and the stepwise discriminant analysis. The multivariate method was tested both on simulated and on real data. The results from the simulation study highlighted that the multivariate GWAS detected a greater number of true associated single nucleotide polymorphisms (SNPs) and Quantitative trait loci (QTLs) than the single marker model and the Bayesian approach. For example, with 3000 animals, the traditional GWAS highlighted only 29 significantly associated markers and 13 QTLs, whereas the multivariate method found 127 associated SNPs and 65 QTLs. The gap between the two approaches slowly decreased as the number of animals increased. The Bayesian method gave worse results than the other two. On average, with the real data, the multivariate GWAS found 108 associated markers for each trait under study and among them, around 63% SNPs were also found in the single marker approach. Among the top 118 associated markers, 76 SNPs harbored putative candidate genes.


2020 ◽  
Vol 10 (7) ◽  
pp. 1776-1784
Author(s):  
Shudong Wang ◽  
Jixiao Wang ◽  
Xinzeng Wang ◽  
Yuanyuan Zhang ◽  
Tao Yi

Genome-wide association studies (GWAS) are powerful tools for identifying pathogenic genes of complex diseases and revealing genetic structure of diseases. However, due to gene-to-gene interactions, only a part of the hereditary factors can be revealed. The meta-analysis based on GWAS can integrate gene expression data at multiple levels and reveal the complex relationship between genes. Therefore, we used meta-analysis to integrate GWAS data of sarcoma to establish complex networks and discuss their significant genes. Firstly, we established gene interaction networks based on the data of different subtypes of sarcoma to analyze the node centralities of genes. Secondly, we calculated the significant score of each gene according to the Staged Significant Gene Network Algorithm (SSGNA). Then, we obtained the critical gene set HYC of sarcoma by ranking the scores, and then combined Gene Ontology enrichment analysis and protein network analysis to further screen it. Finally, the critical core gene set Hcore containing 47 genes was obtained and validated by GEPIA analysis. Our method has certain generalization performance to the study of complex diseases with prior knowledge and it is a useful supplement to genome-wide association studies.


Sign in / Sign up

Export Citation Format

Share Document