scholarly journals Influence of insecticide resistance on the biting and resting preferences of malaria vectors in the Gambia

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0241023
Author(s):  
Majidah Hamid-Adiamoh ◽  
Davis Nwakanma ◽  
Benoit Sessinou Assogba ◽  
Mamadou Ousmane Ndiath ◽  
Umberto D’Alessandro ◽  
...  

Background The scale-up of indoor residual spraying and long-lasting insecticidal nets, together with other interventions have considerably reduced the malaria burden in The Gambia. This study examined the biting and resting preferences of the local insecticide-resistant vector populations few years following scale-up of anti-vector interventions. Method Indoor and outdoor-resting Anopheles gambiae mosquitoes were collected between July and October 2019 from ten villages in five regions in The Gambia using pyrethrum spray collection (indoor) and prokopack aspirator from pit traps (outdoor). Polymerase chain reaction assays were performed to identify molecular species, insecticide resistance mutations, Plasmodium infection rate and host blood meal. Results A total of 844 mosquitoes were collected both indoors (421, 49.9%) and outdoors (423, 50.1%). Four main vector species were identified, including An. arabiensis (indoor: 15%, outdoor: 26%); An. coluzzii (indoor: 19%, outdoor: 6%), An. gambiae s.s. (indoor: 11%, outdoor: 16%), An. melas (indoor: 2%, outdoor: 0.1%) and hybrids of An. coluzzii-An. gambiae s.s (indoors: 3%, outdoors: 2%). A significant preference for outdoor resting was observed in An. arabiensis (Pearson X2 = 22.7, df = 4, P<0.001) and for indoor resting in An. coluzzii (Pearson X2 = 55.0, df = 4, P<0.001). Prevalence of the voltage-gated sodium channel (Vgsc)-1014S was significantly higher in the indoor-resting (allele freq. = 0.96, 95%CI: 0.78–1, P = 0.03) than outdoor-resting (allele freq. = 0.82, 95%CI: 0.76–0.87) An. arabiensis population. For An. coluzzii, the prevalence of most mutation markers was higher in the outdoor (allele freq. = 0.92, 95%CI: 0.81–0.98) than indoor-resting (allele freq. = 0.78, 95%CI: 0.56–0.86) mosquitoes. However, in An. gambiae s.s., the prevalence of Vgsc-1014F, Vgsc-1575Y and GSTe2-114T was high (allele freq. = 0.96–1), but did not vary by resting location. The overall sporozoite positivity rate was 1.3% (95% CI: 0.5–2%) in mosquito populations. Indoor-resting An. coluzzii had mainly fed on human blood while indoor-resting An. arabiensis fed on animal blood. Conclusion In this study, high levels of resistance mutations were observed that could be influencing the mosquito populations to rest indoors or outdoors. The prevalent animal-biting behaviour demonstrated in the mosquito populations suggest that larval source management could be an intervention to complement vector control in this setting.

2020 ◽  
Author(s):  
Majidah Hamid-Adiamoh ◽  
Davis Nwakanma ◽  
Benoit Sessinou Assogba ◽  
Mamadou Ousmane Ndiath ◽  
Umberto D’Alessandro ◽  
...  

AbstractBackgroundThe scale-up of indoor residual spraying and long-lasting insecticidal nets, together with other interventions have considerably reduced the malaria burden in The Gambia. This study examined the biting and resting preferences of the local insecticide-resistant vector populations few years following scale-up of anti-vector interventions.MethodIndoor and outdoor-resting Anopheles gambiae mosquitoes were collected between July and October 2019 from ten villages in five regions in The Gambia using pyrethrum spray collection (indoor) and prokopack aspirator from pit traps (outdoor). Polymerase chain reaction assays were performed to identify molecular species, insecticide resistance mutations, Plasmodium infection rate and host blood meal. ResultsA total of 844 mosquitoes were collected both indoors (421, 49.9%) and outdoors (423, 50.1%). Four main vector species were identified, including An. arabiensis (indoor: 15%, outdoor: 26%); An. coluzzii (indoor: 19%, outdoor: 6%), An. gambiae s.s. (indoor: 11%, outdoor: 16%), An. melas (indoor: 2%, outdoor: 0.1%) and hybrids of An. coluzzii-An. gambiae (indoors: 3%, outdoors: 2%). A significant preference for outdoor resting was observed in An. arabiensis (Pearson X2=22.7, df=4, P<0.001) and for indoor resting in An. coluzzii (Pearson X2=55.0, df=4, P<0.001). Prevalence of the voltage-gated sodium channel (Vgsc)-1014S was higher in the indoor-resting (allele freq. = 0.96, 95%CI: 0.78–1) than outdoor-resting (allele freq. = 0.82, 95%CI: 0.76–0.87) An. arabiensis population. For An. coluzzii, the prevalence of most mutation markers were higher in the outdoor (allele freq. = 0.92, 95%CI: 0.81–0.98) than indoor-resting (allele freq. = 0.78, 95%CI: 0.56–0.86) mosquitoes. Sporozoite positivity rate was 1.3% (95% CI: 0.5–2%). Indoor-resting An. coluzzii had mainly fed on human blood while indoor-resting An. arabiensis, animal blood.ConclusionThe indoor-resting behavior of An. arabiensis that preferred animal blood and had low sporozoite rates, may be determined by the Vgsc-1014S mutation. Control interventions may include complementary vector control approaches such as zooprophylaxis.


Author(s):  
Jianhai Yin ◽  
Frederick Yamba ◽  
Canjun Zheng ◽  
Shuisen Zhou ◽  
Samuel Juana Smith ◽  
...  

Vector control interventions including long-lasting insecticidal nets and indoor residual spraying are important for malaria control and elimination. And effectiveness of these interventions depends entirely on the high level of susceptibility of malaria vectors to insecticides. However, the insecticide resistance in majority of mosquito vector species across African countries is a serious threat to the success of vector control efforts with the extensive use of insecticides, while no data on insecticide resistance was reported from Sierra Leone in the past decade. In the present study, the polymerase chain reaction was applied for the identification of species of 757 dry adult female Anopheles gambiae mosquitoes reared from larvae collected from four districts in Sierra Leone during May and June 2018. And the mutations of kdr, rdl, ace-1 genes in An. gambiae were detected using SNaPshot and sequencing. As a result, one sample from Western Area Rural district belonged to Anopheles melas, and 748 An. gambiae were identified. Furthermore, the rdl mutations, kdr west mutations and ace-1 mutation were found. The overall frequency was 35.7%, 0.3%, 97.6% and 4.5% in A296G rdl, A296S rdl, kdrW and ace-1, respectively. The frequencies of A296G rdl mutation (P &lt; 0.001), kdrW mutation (P = 0.001) and ace-1 mutation (P &lt; 0.001) were unevenly distributed in four districts, respectively, while no statistical significance was found in A296S rdl mutation (P = 0.868). In addition, multiple resistance patterns were also found. In conclusion, multiple mutations involved in insecticide resistance in An. gambiae populations in Sierra Leone were detected in the kdrW, A296G rdl and ace-1 alleles in the present study. It is necessary to monitor vector susceptibility levels to insecticides used in this country, and update the insecticide resistance monitoring and management strategy.


2022 ◽  
Author(s):  
Akua Obeng Forson ◽  
Isaac A. Hinne ◽  
Shittu B. Dhikrullahi ◽  
Isaac Kwame Sr ◽  
Abdul Rahim Mohammed ◽  
...  

Abstract Background: In Sub-Saharan Africa, there is widespread use of long-lasting insecticidal nets (LLINs) and Indoor residual spraying (IRS) to help control the density of malaria vectors and decrease the incidence of malaria in communities. An understanding of the interactions between increased insecticide use and resting behaviour patterns of malaria mosquitoes is important for an effective vector control programme. This study was carried out to investigate the resting behavior, host preference and infection with Plasmodium falciparum of malaria vectors in Ghana in the context of increasing insecticide resistance in malaria vectors in sub-saharan Africa.Methods: Indoor and outdoor resting Anopheline mosquitoes were sampled during the dry and rainy seasons in five sites that were in 3 ecological landscapes [Sahel savannah (Kpalsogou, Pagaza, Libga), Coastal savannah (Anyakpor) and Forest (Konongo) zones] using pyrethrum spray catches (PSC), mechanical aspiration (Prokopack) for indoor collections, pit shelter and Prokopack for outdoor collections. PCR based molecular diagnostics were used to determine mosquito speciation, genotype for knockdown resistance mutations (L1014S and L1014F), G119S Ace-1 mutation, specific host blood meal origins and sporozoite infection in field collected mosquitoes.Results: Anopheles gambiae s. l. was the predominant species (89.95%, n = 1,718), followed by An. rufipes (8.48%, n=162), and An. funestus s. l. (1.57%, n = 30). Sibling species of the Anopheles gambiae revealed An. coluzzii accounted for 63% (95% CI: 57.10 – 68.91), followed by An. gambiae s. s [27% (95% CI: 21.66 – 32.55)], and An. arabiensis [9% (95% CI: 6.22 – 13.57)]. The mean resting density of An. gambiae s. l. was higher outdoors (79.63%; 1,368/1,718) than indoors (20.37%; 350/1,718) (z = -4.815, p< 0.0001). The kdr west L1014F and the Ace-1 mutations were highest in indoor resting An. coluzzii and An. gambiae in the sahel-savannah sites compared to the forest and coastal savannah sites. Overall, the blood meal analyses revealed a large proportion of the malaria vectors preferred feeding on humans (70.2 %) than animals (29.8%) in all sites. The sporozoite rates was only detected in indoor resting An. coluzzii from the sahel savannah (5.0%) and forest (2.5%) zones.Conclusion: The study reports high outdoor resting densities of An. gambiae and An. coluzzii with high kdr west mutation frequencies, and persistence of malaria transmission indoors despite the use of LLINs and IRS. Continuous monitoring of changes in resting behavior of mosquitoes and implementation of complementary malaria control interventions are needed to target outdoor resting Anopheles mosquitoes in Ghana.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dieudonné Diloma Soma ◽  
Barnabas Zogo ◽  
Domonbabele François de Sales Hien ◽  
Aristide Sawdetuo Hien ◽  
Didier Alexandre Kaboré ◽  
...  

Abstract Background The rapid spread of insecticide resistance in malaria vectors and the rebound in malaria cases observed recently in some endemic areas underscore the urgent need to evaluate and deploy new effective control interventions. A randomized control trial (RCT) was conducted with the aim to investigate the benefit of deploying complementary strategies, including indoor residual spraying (IRS) with pirimiphos-methyl in addition to long-lasting insecticidal nets (LLINs) in Diébougou, southwest Burkina Faso. Methods We measured the susceptibility of the Anopheles gambiae (s.l.) population from Diébougou to conventional insecticides. We further monitored the efficacy and residual activity of pirimiphos-methyl on both cement and mud walls using a laboratory susceptible strain (Kisumu) and the local An. gambiae (s.l.) population. Results An. gambiae (s.l.) from Diébougou was resistant to DDT, pyrethroids (deltamethrin, permethrin and alphacypermethrin) and bendiocarb but showed susceptibility to organophosphates (pirimiphos-methyl and chlorpyrimiphos-methyl). A mixed-effect generalized linear model predicted that pirimiphos-methyl applied on cement or mud walls was effective for 210 days against the laboratory susceptible strain and 247 days against the local population. The residual efficacy of pirimiphos-methyl against the local population on walls made of mud was similar to that of cement (OR = 0.792, [0.55–1.12], Tukey’s test p-value = 0.19). Conclusions If data on malaria transmission and malaria cases (as measured trough the RCT) are consistent with data on residual activity of pirimiphos-methyl regardless of the type of wall, one round of IRS with pirimiphos-methyl would have the potential to control malaria in a context of multi-resistant An. gambiae (s.l.) for at least 7 months.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Pauline Winnie Orondo ◽  
Steven G. Nyanjom ◽  
Harrysone Atieli ◽  
John Githure ◽  
Benyl M. Ondeto ◽  
...  

Abstract Background Malaria control in Kenya is based on case management and vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). However, the development of insecticide resistance compromises the effectiveness of insecticide-based vector control programs. The use of pesticides for agricultural purposes has been implicated as one of the sources driving the selection of resistance. The current study was undertaken to assess the status and mechanism of insecticide resistance in malaria vectors in irrigated and non-irrigated areas with varying agrochemical use in western Kenya. Methods The study was carried out in 2018–2019 in Homa Bay County, western Kenya. The bioassay was performed on adults reared from larvae collected from irrigated and non-irrigated fields in order to assess the susceptibility of malaria vectors to different classes of insecticides following the standard WHO guidelines. Characterization of knockdown resistance (kdr) and acetylcholinesterase-inhibiting enzyme/angiotensin-converting enzyme (Ace-1) mutations within Anopheles gambiae s.l. species was performed using the polymerase chain reaction (PCR) method. To determine the agricultural and public health insecticide usage pattern, a questionnaire was administered to farmers, households, and veterinary officers in the study area. Results Anopheles arabiensis was the predominant species in the irrigated (100%, n = 154) area and the dominant species in the non-irrigated areas (97.5%, n = 162), the rest being An. gambiae sensu stricto. In 2018, Anopheles arabiensis in the irrigated region were susceptible to all insecticides tested, while in the non-irrigated region reduced mortality was observed (84%) against deltamethrin. In 2019, phenotypic mortality was decreased (97.8–84% to 83.3–78.2%). In contrast, high mortality from malathion (100%), DDT (98.98%), and piperonyl butoxide (PBO)-deltamethrin (100%) was observed. Molecular analysis of the vectors from the irrigated and non-irrigated areas revealed low levels of leucine-serine/phenylalanine substitution at position 1014 (L1014S/L1014F), with mutation frequencies of 1–16%, and low-frequency mutation in the Ace-1R gene (0.7%). In addition to very high coverage of LLINs impregnated with pyrethroids and IRS with organophosphate insecticides, pyrethroids were the predominant chemical class of pesticides used for crop and animal protection. Conclusion Anopheles arabiensis from irrigated areas showed increased phenotypic resistance, and the intensive use of pesticides for crop protection in this region may have contributed to the selection of resistance genes observed. The susceptibility of these malaria vectors to organophosphates and PBO synergists in pyrethroids offers a promising future for IRS and insecticide-treated net-based vector control interventions. These findings emphasize the need for integrated vector control strategies, with particular attention to agricultural practices to mitigate mosquito resistance to insecticides. Graphic abstract


2017 ◽  
Vol 114 (52) ◽  
pp. E11267-E11275 ◽  
Author(s):  
Hmooda Toto Kafy ◽  
Bashir Adam Ismail ◽  
Abraham Peter Mnzava ◽  
Jonathan Lines ◽  
Mogahid Shiekh Eldin Abdin ◽  
...  

Insecticide-based interventions have contributed to ∼78% of the reduction in the malaria burden in sub-Saharan Africa since 2000. Insecticide resistance in malaria vectors could presage a catastrophic rebound in disease incidence and mortality. A major impediment to the implementation of insecticide resistance management strategies is that evidence of the impact of resistance on malaria disease burden is limited. A cluster randomized trial was conducted in Sudan with pyrethroid-resistant and carbamate-susceptible malaria vectors. Clusters were randomly allocated to receive either long-lasting insecticidal nets (LLINs) alone or LLINs in combination with indoor residual spraying (IRS) with a pyrethroid (deltamethrin) insecticide in the first year and a carbamate (bendiocarb) insecticide in the two subsequent years. Malaria incidence was monitored for 3 y through active case detection in cohorts of children aged 1 to <10 y. When deltamethrin was used for IRS, incidence rates in the LLIN + IRS arm and the LLIN-only arm were similar, with the IRS providing no additional protection [incidence rate ratio (IRR) = 1.0 (95% confidence interval [CI]: 0.36–3.0; P = 0.96)]. When bendiocarb was used for IRS, there was some evidence of additional protection [interaction IRR = 0.55 (95% CI: 0.40–0.76; P < 0.001)]. In conclusion, pyrethroid resistance may have had an impact on pyrethroid-based IRS. The study was not designed to assess whether resistance had an impact on LLINs. These data alone should not be used as the basis for any policy change in vector control interventions.


1995 ◽  
Vol 85 (2) ◽  
pp. 229-234 ◽  
Author(s):  
J. Hemingway ◽  
S.W. Lindsay ◽  
G.J. Small ◽  
M. Jawara ◽  
F.H. Collins

AbstractPyrethroid-impregnated bednets are being used nationwide in The Gambia. The future success of this malaria control programme depends partly on the vectors remaining susceptible to those insecticides used for treating the nets. The present study was carried out on the south bank of the river Gambia, during the first large scale trial of nets in this country. Thus this area represents a sentinel site for detecting insecticide resistance in local vectors. This study gives an example of how a system of early detection for resistance problems can be set up in a relatively complex situation where multiple vectors and non-vectors are present. Samples of the Anopheles gambiae complex were caught indoors using light traps in twelve villages used in the bednet study. In all villages A. gambiae sensu stricto Giles was the predominant member of the complex as determined using the rDNA-PCR diagnostic assay. Limited bioassays with DDT and permethrin, and biochemical assays for a range of insecticide resistance mechanisms suggest that the A. gambiae complex remains completely susceptible to all major classes of commonly used insecticides including pyrethroids. Biochemical assays suggest that a low frequency of DDT resistance may occur in A. melas Theobald. This is based on elevated glutathione S-transferase levels coupled with increased levels of DDT metabolism and does not involve cross-resistance to pyrethroids. Therefore we do not envisage a decline in the efficacy of treated nets against malaria vectors in the study area in the immediate future, although monitoring should be continued whilst wide-scale use of impregnated bednets is operational.


1970 ◽  
Vol 13 (3) ◽  
pp. 215-228
Author(s):  
Alemayehu Abate ◽  
Emana Getu ◽  
Melaku Wale ◽  
Mamuye Hadis ◽  
Wubegzier Mekonen

Long term and wide use of indoor residual sprays augments the selection of insecticide resistance genes. The development of insecticide resistance in an insect population depends up on the volume and frequency of sprays against them and the inherent characteristics of the insect species. However, despite its use for decades, the effect of residual sprays on the status of insecticide resistance of malaria vectors is unknown in Ethiopia. The objective of this study was to assess the effect of bendiocarb 80% WP indoor residual spraying on insecticide resistance status of An. arabiensis in Bahir Dar Zuria District, Northwest Ethiopia. Susceptibility of An. arabiensis was examined against different insecticides using 2-3-day old female mosquitoes following WHO insecticide susceptibility test procedures. Test results were calculated according to WHO bioassay test protocol. Chi-square test was used to determine the significance level of differences between years and study sites. Susceptibility of An. arabiensis to fenitrothion, pirimiphosmethyl and propoxur was 100% in both study villages for three successive years. Resistance to bendiocarb was suspected after two years (2015) in Andassa, but not in Tikurit. Mortality and knock down due to DDT significantly increased from 2013 to 2015 at Tikurit (knock down: χ2 = 117.9, P<.0001 and mortality:  χ2 = 66.3, P<.0001; due to deltamethrin, knock down: χ2 = 7.3, P=.004 and mortality: χ2 = 37.8, P<.0001). The same was true at Andassa (due to DDT, knock down: χ2 = 198.7, P<.0001 and mortality:  χ2 = 82.9, P<.0001; due to deltamethrin, knock down: χ2 = 26.1, P<.0001 and mortality: χ2 = 48.2, P<.0001). Bendiocarb was effective against the An. arabiensis for two years under bendiocarb IRS operation so that alternative insecticides with different mode of action should be replaced every two to three years to prolong its efficacy.


2019 ◽  
Author(s):  
Maxwell G. Machani ◽  
Eric Ochomo ◽  
Fred Amimo ◽  
Jackline Kosgei ◽  
Stephen Munga ◽  
...  

AbstractBackgroundUnderstanding the interactions between increased insecticide resistance in field malaria vector populations and the subsequent resting behaviour patterns is important for planning adequate vector control measures in a specific context and sustaining the current vector interventions. The aim of this study was to investigate the resting behavior, host preference and infection with Plasmodium falciparum sporozoites by malaria vectors in different ecological settings of western Kenya with different levels of insecticide resistance.MethodsIndoor and outdoor resting Anopheline mosquitoes were sampled during the dry and rainy seasons in Kisian (lowland site) and Bungoma (highland site), both in western Kenya. WHO tube bioassay was used to determine levels of phenotypic resistance of first generation offspring (F1 progeny) of malaria vectors resting indoors and outdoors to deltamethrin. PCR-based molecular diagnostics were used for mosquito speciation, genotype for resistance mutations and to determine specific host blood meal origins. Enzyme-linked Immunosorbent Assay (ELISA) was used to determine mosquito sporozoite infections.ResultsOverall, 3,566 female Anopheles mosquitoes were collected with Anopheles gambiae s.l [In Bungoma, An. gambiae s.s (90.9%), An arabiensis (7.6%) and in Kisian, An. gambiae s.s (38.9%), An. arabiensis (60.2%)] being the most abundant species (74.7%) followed by An. funestus s.l (25.3%). The majority of An. gambiae s.l (85.4 and 58%) and An. funestus (96.6 and 91.1%) were caught resting indoors in Bungoma and Kisian respectively.Vgsc-1014S was observed at a slightly higher frequency in An. gambiae s.s hereafter(An. gambiae) resting indoor than outdoor (89.7 vs 84.6% and 71.5 vs 61.1%) in Bungoma and Kisian respectively. For An. arabiensis, Vgsc-1014S was 18.2% indoor and outdoor (17.9%) in Kisian. In Bungoma, the Vgsc-1014S was only detected in An. arabiensis resting indoors with a frequency of 10%. The Vgsc-1014F mutation was only present in An. gambiae resting indoors from both sites, but at very low frequencies in Kisian compared to Bungoma (0.8 and 9.2% respectively. In Bungoma, the sporozoite rates for An. funestus, An. gambiae, and An. arabiensis resting indoors were 10.9, 7.6 and 3.4 % respectively. For outdoor resting, An. gambiae and An. arabiensis in Bungoma, the sporozoite rates were 4.7 and 2.9 % respectively.Overall, in Bungoma, the sporozoite rate for indoor resting mosquitoes was 8.6% and 4.2% for outdoors. In Kisian the sporozoite rate was 0.9% for indoor resting An. gambiae. None of the outdoor collected mosquitoes in Kisian tested positive for sporozoite infections.ConclusionThe study reports high densities of insecticide-resistant An. gambiae and An. funestus resting indoors and the persistence of malaria transmission indoors with high entomological inoculation rates (EIR) regardless of the use of Long-lasting insecticidal nets (LLINs). These findings underline the difficulties of controlling malaria vectors resting and biting indoors using the current interventions. Supplemental vector control tools and implementation of sustainable insecticide resistance management strategies are needed in western Kenya.


Author(s):  
I. A. Atting ◽  
N. D. Ekpo ◽  
M. E. Akpan ◽  
B. E. Bassey ◽  
M. J. Asuquo ◽  
...  

Development of resistance by different malaria vector populations to insecticides has become a big threat to malaria vector elimination. This study evaluated the susceptibility of Anopheles mosquito populations in Akwa Ibom State, Nigeria to permethrin (0.75%), deltamethrin (0.5%), lambdacyhalothrin (0.5%), alphacypermethrin (0.75%), Dichlorodiphenyltrichloethane (DDT), propoxur, bendiocarb and pirimiphosmethylin in World Health Organization (WHO) test tubes following standard protocols. The mosquitoes were obtained as aquatic forms and reared under laboratory conditions to adults. The adults were subjected to WHO susceptibility bioassays following standard procedures. Malaria vectors across the study sites were resistant to permethrin, deltamethrin, lambdacyhalothrin and alphacypermethrin insecticides. Full susceptibility to propoxur and bendiocarb was recorded across the sites. Full susceptibility to pirimiphosmethyl was recorded in populations from three sites. Nevertheless, population of the malaria vectors collected from Oron was resistant to pirimiphosmethyl. KDT50 and KDT95 estimated for each insecticide using a log-time probit model revealed that knockdown was more rapid for deltamethrin, lambdacyhalothrin, alphacypermethrin, propoxur, bendiocarb and pirimiphosmethyl than for DDT and permethrin  across the study sites. Morphological identification of all the mosquito samples used revealed that they were female Anopheles gambiae s.l. Sustained susceptibility of malaria vectors to pyrethriod is necessary for successful malaria control with insecticide treated nets and Indoor Residual Spraying (IRS). Emergence of focal points with insecticide resistance gives serious concern especially with the scale-up in distribution of pyrethriod treated nets to these areas. This may increase selection pressures due to overexposure. Further study to identify the exact resistance mechanism(s) of malaria vectors from these sites is recommended.


Sign in / Sign up

Export Citation Format

Share Document