scholarly journals Honey bees (Apis cerana) use animal feces as a tool to defend colonies against group attack by giant hornets (Vespa soror)

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242668
Author(s):  
Heather R. Mattila ◽  
Gard W. Otis ◽  
Lien T. P. Nguyen ◽  
Hanh D. Pham ◽  
Olivia M. Knight ◽  
...  

Honey bees (genus Apis) are well known for the impressive suite of nest defenses they have evolved to protect their abundant stockpiles of food and the large colonies they sustain. In Asia, honey bees have evolved under tremendous predatory pressure from social wasps in the genus Vespa, the most formidable of which are the giant hornets that attack colonies in groups, kill adult defenders, and prey on brood. We document for the first time an extraordinary collective defense used by Apis cerana against the giant hornet Vespa soror. In response to attack by V. soror, A. cerana workers foraged for and applied spots of animal feces around their nest entrances. Fecal spotting increased after colonies were exposed either to naturally occurring attacks or to chemicals that scout hornets use to target colonies for mass attack. Spotting continued for days after attacks ceased and occurred in response to V. soror, which frequently landed at and chewed on entrances to breach nests, but not Vespa velutina, a smaller hornet that rarely landed at entrances. Moderate to heavy fecal spotting suppressed attempts by V. soror to penetrate nests by lowering the incidence of multiple-hornet attacks and substantially reducing the likelihood of them approaching and chewing on entrances. We argue that A. cerana forages for animal feces because it has properties that repel this deadly predator from nest entrances, providing the first report of tool use by honey bees and the first evidence that they forage for solids that are not derived from plants. Our study describes a remarkable weapon in the already sophisticated portfolio of defenses that honey bees have evolved in response to the predatory threats they face. It also highlights the strong selective pressure honey bees will encounter if giant hornets, recently detected in western North America, become established.

Insects ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 157 ◽  
Author(s):  
Dahe Yang ◽  
Hongxia Zhao ◽  
Junming Shi ◽  
Xiang Xu ◽  
Yanyan Wu ◽  
...  

Honey bees are essential to the functioning of terrestrial ecosystems. However, despite no single factor being blamed for losses of honey bee colonies in Europe and the USA, viruses have been considered as a major driver. Moreover, a virus vector can enhance the titer and virulence of virus such as Varroa destructor can change the virulence of the deformed wing virus. Here, we report molecular evidence for aphid lethal paralysis virus (ALPV) infecting Vespa velutina, which is an important predator of honey bees, especially of Apis cerana. Viral replication and phylogenetic analysis indicated that ALPV can not only replicate in V. velutina and A. cerana, but ALPV from A. cerana (ALPV-Ac) was also significantly associated with that of V. velutina (ALPV-Vv), though distinct from those of Apis mellifera (ALPV-Am). The host state posterior probability displayed that V. velutina is the main viral reservoir between V. velutina and A. cerana. Our results show ALPV had expanded host diversity resulting in potential impacts on the health of pollinators, even on the pollination ecosystem. We suggest further studies should investigate potential risks and impacts on pollinator populations of hornets. These results should have an impact conservation efforts focused on sustaining native pollinator abundance and diversity, and therefore, the crucial ecosystem services that they provide.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 484
Author(s):  
Gaoying Gu ◽  
Yichuan Meng ◽  
Ken Tan ◽  
Shihao Dong ◽  
James C. Nieh

The heat ball defense of honey bees against their sympatric hornet predators is a classic and spectacular outcome of a co-evolutionary race. Hundreds of bees can encapsulate a hornet within a large ball that kills it with elevated heat. However, the role of stinging in this defense has been discounted, even though sting venom is an important weapon in bees. Surprisingly, no studies have tested the role of bee sting venom alone or in conjunction with elevated temperature on hornet survival. We surveyed dead Vespa velutina hornets found near and inside Apis cerana colonies and found stings retained in hornet bodies, most often in an intersegmental neck-like region, the veracervix. Experimentally stinging hornets in this region with A. cerana and Apis mellifera guards significantly increased hornet mortality. The combination of sting venom and elevated heat ball temperature (44 °C) was the most lethal, although there was no synergistic interaction between sting venom and temperature. As expected, hornet mortality increased when they were stung more often. The average amount of venom per insect species and the length of stinger lancets correlated with insect mass. Sting venom thus remains important in the arms race between bees and their hornet predators.


2009 ◽  
Vol 24 ◽  
pp. 89-95 ◽  
Author(s):  
Nar Bahadur Ranabhat ◽  
Ananda Shova Tamrakar

A study was conducted at the southern belt of Kaski District during August 2003 to July 2004 to identify natural enemies of honey bee Apis cerana Fab. and associated problems in beekeeping. Four species of wasps viz: Vespa velutina, V. bicolor, V. tropica and V. basalis were observed preying on Apis cerana. Six species of Ants were collected from hive attacking honey bees viz Componatus sp, Sima sp, Monomorium sp, Myrmica sp and two unidentified. Four species of spider viz Palatar indicus, Ariope areuta and the other two belonging to family Theridae and Araneidae were collected from the hives. Two species of Birds, Green bee- Eater and Drongo; One species of Beetle, One Chalcid (Antrocephalus sp) were identified.The disease Thaisac brood, Mite, Wax Moth and pesticide damage, deforestation, absconding of bees, lack of technical knowledge were important problems for apiculture in study area.  Key words: Apis cerana F; Enemies;  Pesticide;  Absconding;  Kaski  Journal of Natural History MuseumVol. 24, 2009Page: 89-95 


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Liping Sun ◽  
Xueqi Zhang ◽  
Shufa Xu ◽  
Chunsheng Hou ◽  
Jin Xu ◽  
...  

Abstract Background Sacbrood is an infectious disease of the honey bee caused by Scbrood virus (SBV) which belongs to the family Iflaviridae and is especially lethal for Asian honeybee Apis cerana. Chinese Sacbrood virus (CSBV) is a geographic strain of SBV. Currently, there is a lack of an effective antiviral agent for controlling CSBV infection in honey bees. Methods Here, we explored the antiviral effect of a Chinese medicinal herb Radix isatidis on CSBV infection in A. cerana by inoculating the 3rd instar larvae with purified CSBV and treating the infected bee larvae with R. isatidis extract at the same time. The growth, development, and survival of larvae between the control and treatment groups were compared. The CSBV copy number at the 4th instar, 5th instar, and 6th instar larvae was measured by the absolute quantification PCR method. Results Bioassays revealed that R. isatidis extract significantly inhibited the replication of CSBV, mitigated the impacts of CSBV on larval growth and development, reduced the mortality of CSBV-infected A. cerana larvae, and modulated the expression of immune transcripts in infected bees. Conclusion Although the mechanism underlying the inhibition of CSBV replication by the medicine plant will require further investigation, this study demonstrated the antiviral activity of R. isatidis extract and provides a potential strategy for controlling SBV infection in honey bees.


1990 ◽  
Vol 80 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Annette K. Walker ◽  
N. K. Joshi ◽  
S. K. Verma

AbstractRecords of braconid parasitoids attacking bees (Apidae) are reviewed and their biology is discussed. The adult of Syntretomorpha szaboi Papp (Braconidae) is redescribed, the female for the first time. The final-instar larva is also described for the first time and the implications of interpreting larval characters are discussed. The Oriental honey bee, Apis cerana Fabricius, is recorded here for the first time as the host of S. szaboi.


2019 ◽  
Vol 67 (1) ◽  
Author(s):  
Hugo R. Fernández ◽  
Ana Lucia Gonzalez Achem ◽  
Marcela Correa ◽  
Virginia H. Albarracín

The solubility equilibrium of calcite is influenced by physicochemical, climatic and biological factors. Annual cycles of exceptionally prolonged drought, in conjunction with naturally occurring diffuse organic pollution, generate the unique conditions for the precipitation of lithified carbonate structures (microbialites). The aim of this article is to analyze the possible implications of calcite precipitation produced in mats of Cladophora sp. in an Andean subtropical basin, considering it is the first time this phenomenon is described for the region. We collected samples from selected sites at the Lules River Basin, in four sampling dates between the years 2003 and 2004, within a monitoring work of 15 years. Samples were analyzed using an electron microscope and X-ray diffraction analysis. We found that Gomphonema sp. attached to Cladophora sp. contributes to precipitation of calcite and formation of microbialite like structures, in the studied area. This work presents an initial discussion of the discovery of microbialites-like structures attached to Cladophora sp. mats in a subtropical Andean stream and the environmental conditions that lead to their production, as well as the possible ecological implications of these microbialites.


2014 ◽  
Vol 58 (2) ◽  
pp. 59-70 ◽  
Author(s):  
Seydur Rahman ◽  
Ibamelaker Thangkhiew ◽  
Sudhanya R. Hajong

Abstract The hypopharyngeal gland (HPG) is the principal organ of protein synthesis in honey bees. It is involved in larval rearing. We examined the fresh head weight, HPG acini diameter, and HPG protein content in worker bees engaged in different tasks and under brood and broodless conditions. Scanning electron microscopy revealed that the HPG acini diameter of worker bees was related to their task. The highest HPG volume was found in nurse bees, and the volume regressed when the task changed from guarding to foraging. The fresh head weight was positively correlated with HPG acini diameter. Although, there was no positive correlation between HPG acini diameter and protein concentration, the glandular protein concentration increased progressively in nurse bees and declined in guard and forager bees. Histochemistry revealed similar results. Despite displaying significantly larger glands, guard bee protein secretion was similar to that of the foragers. Brooding had a significant effect on HPG activity. Only worker bees from the colony with an intact brood showed elevated rates of protein synthesis; thus, it is possible that a signal was emitted by the brood, which stimulated protein synthesis in the HPG. However, the size of the HPG was similar in both brood and broodless conditions.


Sign in / Sign up

Export Citation Format

Share Document