scholarly journals Risk of rapid evolutionary escape from biomedical interventions targeting SARS-CoV-2 spike protein

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250780
Author(s):  
Debra Van Egeren ◽  
Alexander Novokhodko ◽  
Madison Stoddard ◽  
Uyen Tran ◽  
Bruce Zetter ◽  
...  

The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is the molecular target for many vaccines and antibody-based prophylactics aimed at bringing COVID-19 under control. Such a narrow molecular focus raises the specter of viral immune evasion as a potential failure mode for these biomedical interventions. With the emergence of new strains of SARS-CoV-2 with altered transmissibility and immune evasion potential, a critical question is this: how easily can the virus escape neutralizing antibodies (nAbs) targeting the spike RBD? To answer this question, we combined an analysis of the RBD structure-function with an evolutionary modeling framework. Our structure-function analysis revealed that epitopes for RBD-targeting nAbs overlap one another substantially and can be evaded by escape mutants with ACE2 affinities comparable to the wild type, that are observed in sequence surveillance data and infect cells in vitro. This suggests that the fitness cost of nAb-evading mutations is low. We then used evolutionary modeling to predict the frequency of immune escape before and after the widespread presence of nAbs due to vaccines, passive immunization or natural immunity. Our modeling suggests that SARS-CoV-2 mutants with one or two mildly deleterious mutations are expected to exist in high numbers due to neutral genetic variation, and consequently resistance to vaccines or other prophylactics that rely on one or two antibodies for protection can develop quickly -and repeatedly- under positive selection. Predicted resistance timelines are comparable to those of the decay kinetics of nAbs raised against vaccinal or natural antigens, raising a second potential mechanism for loss of immunity in the population. Strategies for viral elimination should therefore be diversified across molecular targets and therapeutic modalities.

Author(s):  
Debra Van Egeren ◽  
Alexander Novokhodko ◽  
Madison Stoddard ◽  
Uyen Tran ◽  
Bruce Zetter ◽  
...  

As many prophylactics targeting SARS-CoV-2 are aimed at the spike protein receptor-binding domain (RBD), we examined the risk of immune evasion from previously published RBD-targeting neutralizing antibodies (nAbs). Epitopes for RBD-targeting nAbs overlap one another substantially and can give rise to escape mutants with ACE2 affinities comparable to wild type that still infect cells in vitro. We used evolutionary modeling to predict the frequency of immune escape before and after the widespread presence of nAbs due to vaccines, passive immunization or natural immunity. Our modeling suggests that SARS-CoV-2 mutants with one or two mildly deleterious mutations are expected to exist in high numbers due to neutral genetic variation, and consequently resistance to single or double antibody combinations can develop quickly under positive selection.


2021 ◽  
Author(s):  
Daniele Focosi ◽  
Fabrizio Maggi ◽  
Massimo Franchini ◽  
Scott McConnell ◽  
Arturo Casadevall

Accelerated SARS-CoV-2 evolution under selective pressure by massive deployment of neutralizing antibody-based therapeutics is a concern with potentially severe implications for public health. We review here reports of documented immune escape after treatment with monoclonal antibodies and COVID19 convalescent plasma (CCP). While the former is mainly associated with specific single amino acid mutations at residues within the receptor-binding domain (e.g., E484K/Q, Q493R, and S494P), the few cases of immune evasion after CCP were associated with recurrent deletions within the N-terminal domain of Spike protein (e.g, delHV69-70, delLGVY141-144 and delAL243-244). Continuous genomic monitoring of non-responders is needed to better understand immune escape frequencies and fitness of emerging variants.


2021 ◽  
Author(s):  
Karim Beguir ◽  
Marcin J Skwark ◽  
Yunguan Fu ◽  
Thomas Pierrot ◽  
Santiago Nicolas Lopez Carranza ◽  
...  

The ongoing COVID-19 pandemic is leading to the discovery of hundreds of novel SARS-CoV-2 variants on a daily basis. While most variants do not impact the course of the pandemic, some variants pose significantly increased risk when the acquired mutations allow better evasion of antibody neutralisation in previously infected or vaccinated subjects, or increased transmissibility. Early detection of such high risk variants (HRVs) is paramount for the proper management of the pandemic. However, experimental assays to determine immune evasion and transmissibility characteristics of new variants are resource-intensive and time-consuming, potentially leading to delayed appropriate responses by decision makers. Here we present a novel in silico approach combining Spike protein structure modelling and large protein transformer language models on Spike protein sequences, to accurately rank SARS-CoV-2 variants for immune escape and fitness potential. We validate our immune escape and fitness metrics with in vitro pVNT and binding assays. These metrics can be combined into an automated Early Warning System (EWS) capable of evaluating new variants in minutes and risk monitoring variant lineages in near real-time. The EWS flagged 12 out of 13 variants, designated by the World Health Organisation (WHO, Alpha-Omicron) as potentially dangerous, on average two months ahead of them being designated as such, demonstrating its ability to help increase preparedness against future variants. Omicron was flagged by the EWS on the day its sequence was made available, with immune evasion and binding metrics subsequently confirmed through our in vitro experiments.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009772
Author(s):  
Marta Alenquer ◽  
Filipe Ferreira ◽  
Diana Lousa ◽  
Mariana Valério ◽  
Mónica Medina-Lopes ◽  
...  

Understanding SARS-CoV-2 evolution and host immunity is critical to control COVID-19 pandemics. At the core is an arms-race between SARS-CoV-2 antibody and angiotensin-converting enzyme 2 (ACE2) recognition, a function of the viral protein spike. Mutations in spike impacting antibody and/or ACE2 binding are appearing worldwide, imposing the need to monitor SARS-CoV2 evolution and dynamics in the population. Determining signatures in SARS-CoV-2 that render the virus resistant to neutralizing antibodies is critical. We engineered 25 spike-pseudotyped lentiviruses containing individual and combined mutations in the spike protein, including all defining mutations in the variants of concern, to identify the effect of single and synergic amino acid substitutions in promoting immune escape. We confirmed that E484K evades antibody neutralization elicited by infection or vaccination, a capacity augmented when complemented by K417N and N501Y mutations. In silico analysis provided an explanation for E484K immune evasion. E484 frequently engages in interactions with antibodies but not with ACE2. Importantly, we identified a novel amino acid of concern, S494, which shares a similar pattern. Using the already circulating mutation S494P, we found that it reduces antibody neutralization of convalescent and post-immunization sera, particularly when combined with E484K and with mutations able to increase binding to ACE2, such as N501Y. Our analysis of synergic mutations provides a signature for hotspots for immune evasion and for targets of therapies, vaccines and diagnostics.


2019 ◽  
Author(s):  
Zachary T. Berndsen ◽  
Srirupa Chakraborty ◽  
Xiaoning Wang ◽  
Christopher A. Cottrell ◽  
Jonathan L. Torres ◽  
...  

AbstractThe dense array of N-linked glycans on the HIV-1 Envelope Glycoprotein (Env), known as the “glycan shield”, is a key determinant of immunogenicity, yet intrinsic heterogeneity confounds typical structure-function analysis. Here we present an integrated approach of single-particle electron cryomicroscopy (cryo-EM), computational modeling, and site-specific mass-spectrometry (MS) to probe glycan shield structure and behavior at multiple levels. We found that dynamics lead to an extensive network of inter-glycan interactions that drive the formation of higher-order structure within the glycan shield. This structure defines diffuse boundaries between buried and exposed protein surface and creates a mapping of potentially immunogenic sites on Env. Analysis of Env expressed in different cell lines revealed how cryo-EM can detect subtle changes in glycan occupancy, composition, and dynamics that impact glycan shield structure and epitope accessibility. Importantly, this identified unforeseen changes in the glycan shield of Env obtained from expression in the same CHO cell line used for GMP production. Finally, by capturing the enzymatic deglycosylation of Env in a time-resolved manner we found that highly connected glycan clusters are resistant to digestion and help stabilize the pre-fusion trimer, suggesting the glycan shield may function beyond immune evasion.Significance StatementThe HIV-1 Env “glycan shield” masks the surface of the protein from immune recognition, yet intrinsic heterogeneity defies a typical structure-function description. Using a complementary approach of cryo-EM, computational modeling, and mass-spectrometry we show how heterogeneity and dynamics affect glycan shield structure across scales. Our combined approach facilitated the development of new cryo-EM data analysis methods and allowed for validation of models against experiment. Comparison of Env across a range of glycosylation states revealed how subtle differences in composition impact glycan shield structure and affect the accessibility of epitopes on the surface. Finally, time-resolved cryo-EM experiments uncovered how highly connected glycan clusters help stabilize the pre-fusion trimer, suggesting the glycan shield may function beyond immune evasion.


2021 ◽  
Vol 23 (1) ◽  
pp. 29
Author(s):  
Daniele Focosi ◽  
Fabrizio Maggi ◽  
Massimo Franchini ◽  
Scott McConnell ◽  
Arturo Casadevall

The accelerated SARS-CoV-2 evolution under selective pressure by massive deployment of neutralizing antibody-based therapeutics is a concern with potentially severe implications for public health. We review here reports of documented immune escape after treatment with monoclonal antibodies and COVID-19-convalescent plasma (CCP). While the former is mainly associated with specific single amino acid mutations at residues within the receptor-binding domain (e.g., E484K/Q, Q493R, and S494P), a few cases of immune evasion after CCP were associated with recurrent deletions within the N-terminal domain of the spike protein (e.g., ΔHV69-70, ∆LGVY141-144 and ΔAL243-244). The continuous genomic monitoring of non-responders is needed to better understand immune escape frequencies and the fitness of emerging variants.


Sign in / Sign up

Export Citation Format

Share Document