scholarly journals A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0251194
Author(s):  
Heidi Seibold ◽  
Severin Czerny ◽  
Siona Decke ◽  
Roman Dieterle ◽  
Thomas Eder ◽  
...  

Computational reproducibility is a corner stone for sound and credible research. Especially in complex statistical analyses—such as the analysis of longitudinal data—reproducing results is far from simple, especially if no source code is available. In this work we aimed to reproduce analyses of longitudinal data of 11 articles published in PLOS ONE. Inclusion criteria were the availability of data and author consent. We investigated the types of methods and software used and whether we were able to reproduce the data analysis using open source software. Most articles provided overview tables and simple visualisations. Generalised Estimating Equations (GEEs) were the most popular statistical models among the selected articles. Only one article used open source software and only one published part of the analysis code. Replication was difficult in most cases and required reverse engineering of results or contacting the authors. For three articles we were not able to reproduce the results, for another two only parts of them. For all but two articles we had to contact the authors to be able to reproduce the results. Our main learning is that reproducing papers is difficult if no code is supplied and leads to a high burden for those conducting the reproductions. Open data policies in journals are good, but to truly boost reproducibility we suggest adding open code policies.

Author(s):  
Shinji Kobayashi ◽  
Luis Falcón ◽  
Hamish Fraser ◽  
Jørn Braa ◽  
Pamod Amarakoon ◽  
...  

Objectives: The emerging COVID-19 pandemic has caused one of the world’s worst health disasters compounded by social confusion with misinformation, the so-called “Infodemic”. In this paper, we discuss how open technology approaches - including data sharing, visualization, and tooling - can address the COVID-19 pandemic and infodemic. Methods: In response to the call for participation in the 2020 International Medical Informatics Association (IMIA) Yearbook theme issue on Medical Informatics and the Pandemic, the IMIA Open Source Working Group surveyed recent works related to the use of Free/Libre/Open Source Software (FLOSS) for this pandemic. Results: FLOSS health care projects including GNU Health, OpenMRS, DHIS2, and others, have responded from the early phase of this pandemic. Data related to COVID-19 have been published from health organizations all over the world. Civic Technology, and the collaborative work of FLOSS and open data groups were considered to support collective intelligence on approaches to managing the pandemic. Conclusion: FLOSS and open data have been effectively used to contribute to managing the COVID-19 pandemic, and open approaches to collaboration can improve trust in data.


Solid Earth ◽  
2011 ◽  
Vol 2 (1) ◽  
pp. 53-63 ◽  
Author(s):  
S. Tavani ◽  
P. Arbues ◽  
M. Snidero ◽  
N. Carrera ◽  
J. A. Muñoz

Abstract. In this work we present the Open Plot Project, an open-source software for structural data analysis, including a 3-D environment. The software includes many classical functionalities of structural data analysis tools, like stereoplot, contouring, tensorial regression, scatterplots, histograms and transect analysis. In addition, efficient filtering tools are present allowing the selection of data according to their attributes, including spatial distribution and orientation. This first alpha release represents a stand-alone toolkit for structural data analysis. The presence of a 3-D environment with digitalising tools allows the integration of structural data with information extracted from georeferenced images to produce structurally validated dip domains. This, coupled with many import/export facilities, allows easy incorporation of structural analyses in workflows for 3-D geological modelling. Accordingly, Open Plot Project also candidates as a structural add-on for 3-D geological modelling software. The software (for both Windows and Linux O.S.), the User Manual, a set of example movies (complementary to the User Manual), and the source code are provided as Supplement. We intend the publication of the source code to set the foundation for free, public software that, hopefully, the structural geologists' community will use, modify, and implement. The creation of additional public controls/tools is strongly encouraged.


2012 ◽  
pp. 26-40
Author(s):  
Bhasker Mukerji ◽  
Ramaraj Palanisamy

The popularity of Open Source Software (OSS) in developing countries is quiet evident from its widespread adoption across government departments and public sector organizations. The use of OSS saves economic resources of cash starved countries, provides an opportunity to promote e-government, and to utilize their resources in other sectors. Many developing countries have a large pool of skilled developers who can modify the source code of the OSS at a very low cost. Many governments in developing and developed countries have switched to OSS which probably encourages others to follow the trend. It was not possible to follow the adoption trend in all the developing countries but the usage of OSS in countries like India, Brazil, and Venezuela provides us an insight. The successful adoption of OSS requires thorough analysis of its advantages as well as the issues associated with it. This chapter will provide an overview of OSS, characteristics of OSS developers, and their motivation to volunteer by contributing in OSS projects, followed by the advantages and issues associated with OSS.


Author(s):  
Ruben van Wendel de Joode ◽  
Sebastian Spaeth

Most open source software is developed in online communities. These communities are typically referred to as “open source software communities” or “OSS communities.” In OSS communities, the source code, which is the human-readable part of software, is treated as something that is open and that should be downloadable and modifiable to anyone who wishes to do so. The availability of the source code has enabled a practice of decentralized software development in which large numbers of people contribute time and effort. Communities like Linux and Apache, for instance, have been able to connect thousands of individual programmers and professional organizations (although most project communities remain relatively small). These people and organizations are not confined to certain geographical places; on the contrary, they come from literally all continents and they interact and collaborate virtually.


2012 ◽  
Vol 4 (4) ◽  
pp. 16-32
Author(s):  
Vanessa P. Braganholo ◽  
Bernardo Miranda ◽  
Marta Mattoso

Open source software is required to be widely available to the user community. To help developers fulfill this requirement, Web portals provide a way to make open source projects public so that the user community has access to their source code, can contribute to their development, and can interact with the developer team. However, choosing a Web portal is not an easy task. There are several options available, each of them offering a set of tools and features to its users. The goal of this article is to analyze a set of existing Web portals (SourceForge.net, Apache, Tigris, ObjectWeb, and Savannah) in the hopes that this will help users to choose a hosting site for their projects.


Author(s):  
D. Berry

Open source software (OSS) is computer software that has its underlying source code made available under a licence. This can allow developers and users to adapt and improve it (Raymond, 2001). Computer software can be broadly split into two development models: • Proprietary, or closed software, owned by a company or individual. Copies of the binary are made public; the source code is not usually made public. • Open-source software (OSS), where the source code is released with the binary. Users and developers can be licenced to use and modify the code, and to distribute any improvements they make. Both OSS and proprietary approaches allow companies to make a profit. Companies developing proprietary software make money by developing software and then selling licences to use the software. For example, Microsoft receives a payment for every copy of Windows sold with a personal computer. OSS companies make their money by providing services, such as advising clients on the GPL licence. The licencee can either charge a fee for this service or work free of charge. In practice, software companies often develop both types of software. OSS is developed by an ongoing, iterative process where people share the ideas expressed in the source code. The aim is that a large community of developers and users can contribute to the development of the code, check it for errors and bugs, and make the improved version available to others. Project management software is used to allow developers to keep track of the various versions. There are two main types of open-source licences (although there are many variants and subtypes developed by other companies): • Berkeley Software Distribution (BSD) Licence: This permits a licencee to “close” a version (by withholding the most recent modifications to the source code) and sell it as a proprietary product; • GNU General Public Licence (GNU, GPL, or GPL): Under this licence, licencees may not “close” versions. The licencee may modify, copy, and redistribute any derivative version, under the same GPL licence. The licencee can either charge a fee for this service or work free of charge. Free software first evolved during the 1970s but in the 1990s forked into two movements, namely free software and open source (Berry, 2004). Richard Stallman, an American software developer who believes that sharing source code and ideas is fundamental to freedom of speech, developed a free version of the widely used Unix operating system. The resulting GNU program was released under a specially created General Public Licence (GNU, GPL). This was designed to ensure that the source code would remain openly available to all. It was not intended to prevent commercial usage or distribution (Stallman, 2002). This approach was christened free software. In this context, free meant that anyone could modify the software. However, the term “free” was often misunderstood to mean no cost. Hence, during the 1990s, Eric Raymond and others proposed that open-source software was coined as a less contentious and more business-friendly term. This has become widely accepted within the software and business communities; however there are still arguments about the most appropriate term to use (Moody, 2002). The OSMs are usually organised into a network of individuals who work collaboratively on the Internet, developing major software projects that sometimes rival commercial software but are always committed to the production of quality alternatives to those produced by commercial companies (Raymond, 2001; Williams, 2002). Groups and individuals develop software to meet their own and others’ needs in a highly decentralised way, likened to a Bazaar (Raymond, 2001). These groups often make substantive value claims to support their projects and foster an ethic of community, collaboration, deliberation, and intellectual freedom. In addition, it is argued by Lessig (1999) that the FLOSS community can offer an inspiration in their commitment to transparency in their products and their ability to open up governmental regulation and control through free/libre and open source code.


2016 ◽  
Vol 23 (2) ◽  
pp. 488
Author(s):  
Tim Benson

Background: Open source software (OSS) is becoming more fashionable in health and social care, although the ideas are not new. However progress has been slower than many had expected.Objective: The purpose is to summarise the Free/Libre Open Source Software (FLOSS) paradigm in terms of what it is, how it impacts users and software engineers and how it can work as a business model in health and social care sectors.Method: Much of this paper is a synopsis of Eric Raymond’s seminal book The Cathedral and the Bazaar, which was the first comprehensive description of the open source ecosystem, set out in three long essays. Direct quotes from the book are used liberally, without reference to specific passages. The first part contrasts open and closed source approaches to software development and support. The second part describes the culture and practices of the open source movement. The third part considers business models.Conclusion: A key benefit of open source is that users can access and collaborate on improving the software if they wish. Closed source code may be regarded as a strategic business risk that that may be unacceptable if there is an open source alternative. The sharing culture of the open source movement fits well with that of health and social care.


2015 ◽  
Vol 25 (09n10) ◽  
pp. 1633-1651 ◽  
Author(s):  
Wei Ding ◽  
Peng Liang ◽  
Antony Tang ◽  
Hans van Vliet

The causes of architecture changes can tell about why architecture changes, and this knowledge can be captured to prevent architecture knowledge vaporization and architecture degeneration. But the causes are not always known, especially in open source software (OSS) development. This makes it very hard to understand the underlying reasons for the architecture changes and design appropriate modifications. Architecture information is communicated in development mailing lists of OSS projects. To explore the possibility of identifying and understanding the causes of architecture changes, we conducted an empirical study to analyze architecture information (i.e. architectural threads) communicated in the development mailing lists of two popular OSS projects: Hibernate and ArgoUML, verified architecture changes with source code, and identified the causes of architecture changes from the communicated architecture information. The main findings of this study are: (1) architecture information communicated in OSS mailing lists does lead to architecture changes in code; (2) the major cause for architecture changes in both Hibernate and ArgoUML is preventative changes, and the causes of architecture changes are further classified to functional requirement, external quality requirement, and internal quality requirement using the coding techniques of grounded theory; (3) more than 45% of architecture changes in both projects happened before the first stable version was released.


Sign in / Sign up

Export Citation Format

Share Document