scholarly journals Ozone inactivation of airborne influenza and lack of resistance of respiratory syncytial virus to aerosolization and sampling processes

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253022
Author(s):  
Marie-Eve Dubuis ◽  
Étienne Racine ◽  
Jonathan M. Vyskocil ◽  
Nathalie Turgeon ◽  
Christophe Tremblay ◽  
...  

Influenza and RSV are human viruses responsible for outbreaks in hospitals, long-term care facilities and nursing homes. The present study assessed an air treatment using ozone at two relative humidity conditions (RHs) in order to reduce the infectivity of airborne influenza. Bovine pulmonary surfactant (BPS) and synthetic tracheal mucus (STM) were used as aerosols protectants to better reflect the human aerosol composition. Residual ozone concentration inside the aerosol chamber was also measured. RSV’s sensitivity resulted in testing its resistance to aerosolization and sampling processes instead of ozone exposure. The results showed that without supplement and with STM, a reduction in influenza A infectivity of four orders of magnitude was obtained with an exposure to 1.70 ± 0.19 ppm of ozone at 76% RH for 80 min. Consequently, ozone could be considered as a virucidal disinfectant for airborne influenza A. RSV did not withstand the aerosolization and sampling processes required for the use of the experimental setup. Therefore, ozone exposure could not be performed for this virus. Nonetheless, this study provides great insight for the efficacy of ozone as an air treatment for the control of nosocomial influenza A outbreaks.

Author(s):  
Emmeline L. Blanchard ◽  
Justin D. Lawrence ◽  
Jeffery A. Noble ◽  
Minghao Xu ◽  
Taekyu Joo ◽  
...  

AbstractOzone is a highly oxidizing gas easily generated from atmospheric oxygen with inexpensive equipment and is commonly used for the disinfection of municipal water, foods, and surfaces. We report tests of the ability of ozone to inactivate enveloped respiratory viruses (influenza A virus and respiratory syncytial virus), chosen as more easily handled surrogates for SARS-CoV-2, on N95 respirators and other personal protective equipment (PPE) commonly used in hospitals. At 20 ppm, an ozone concentration easily achieved by standard commercial equipment, the viruses were inactivated with high efficiency as long as the relative humidity was above a threshold value of approximately 50%. In the absence of humidity control, disinfection is more variable and requires considerably longer exposure under relatively dry conditions. This report extends the observations of a previous publication (http://doi.org/10.1080/01919510902747969) to hospital-relevant materials and provides additional details about the relationship of humidity to the antiviral activity of ozone. Home CPAP disinfection devices using ozone can provide effective results for individuals. Ozone did not appear to degrade any of the materials tested except for elastic bands if strained during treatment (such as by the pressure exerted by stapled attachment to N95 respirators). The filtration efficiency of N95 respirator material was not compromised. Overall, we recommend exposures of at least 40 minutes to 20 ppm ozone and >70% relative humidity at ambient temperatures (21-24°C) for 4-log (99.99%) reduction of viral infectivity on a variety of PPE, including gowns, face shields, and respirators. Shorter exposure times are likely to be effective under these conditions, but at the risk of some variability for different materials. Higher ozone concentrations and higher humidity levels promoted faster inactivation of viruses. Our work suggests that ozone exposure can be a widely accessible method for disinfecting PPE, permitting safer re-use for healthcare workers and patients alike in times of shortage.


2012 ◽  
Vol 33 (6) ◽  
pp. 545-550 ◽  
Author(s):  
Natalie Neu ◽  
Theresa Plaskett ◽  
Gordon Hutcheon ◽  
Meghan Murray ◽  
Karen L. Southwick ◽  
...  

Background.Viral respiratory pathogens cause outbreaks in pediatric long-term care facilities (LTCFs), but few studies have used viral diagnostic testing to identify the causative pathogens. We describe the use of such testing during a prolonged period of respiratory illness and elucidate the epidemiology of human metapneumovirus (hMPV) at our LTCF.Design.Retrospective study of influenza-like illness (ILI).Setting.A 136-bed pediatric LTCF from January 1 through April 30, 2010.Methods.The ILI case definition included fever, cough, change in oropharyngeal secretions, increase in oxygen requirement, and/or wheezing.Results.During the study period, 69 episodes of ILI occurred in 61 (41%) of 150 residents. A viral pathogen was detected in 27 (39%) of the episodes, including respiratory syncytial virus (RSV) (n = 3), influenza A virus (not typed; n = 2), parainfluenza virus (n = 2), adenovirus (n = 1), and hMPV (n = 19). Twenty-seven of the residents with ILI (44%) required transfer to acute care hospitals (mean length of hospitalization, 12 days; range, 3–47 days). Residents with tracheostomies were more likely to have ILI (adjusted odds ratio [OR], 3.99 [95% confidence interval {CI}, 1.87–8.53]; P = .0004). The mortality rate for residents with ILI was 1.6%. Residents with hMPV were younger (P = .03), more likely to be transferred to an acute care facility (OR, 3.73 [95% CI, 1.17–11.95]; P = .02), and less likely to have a tracheostomy (adjusted OR, 0.19 [95% CI, 0.047–0.757]; P = .02).Discussion.Diverse pathogens, most notably hMPV, caused ILI in our pediatric LTCF during a prolonged period of time. Viral testing was helpful in characterizing the epidemiology of ILI in this population.


2021 ◽  
Vol 47 (3) ◽  
pp. 132-138
Author(s):  
Philippe Lagacé-Wiens ◽  
Jared Bullard ◽  
Roy Cole ◽  
Paul Van Caeseele

Background: Like endemic coronaviruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is believed to have emerged in humans from a zoonotic source and may ultimately develop a seasonal pattern. A seasonal pattern, particularly if combined with other seasonal outbreaks of respiratory virus infections, may have significant impacts on the healthcare system. We evaluated the seasonal pattern of existing endemic coronaviruses and several other common respiratory viruses to determine the potential impacts of added burden of respiratory disease should SARS-CoV-2 establish seasonality. Methods: National surveillance data for laboratory confirmations of endemic coronaviruses, influenza A and B viruses, rhinovirus/enterovirus, human metapneumovirus, respiratory syncytial virus and parainfluenza virus for the past 10 years were obtained from the Government of Canada Open Data and FluWatch. Epidemic curves were generated from total case numbers and percent of samples testing positive for each respiratory virus by epidemiological week. Results: In Canada, endemic coronaviruses and other common respiratory viruses cause annual seasonal outbreaks in the winter months. Should SARS-CoV-2 develop a seasonal pattern similar to endemic coronaviruses and respiratory viruses, co-circulation would be expected to peak between January and March. Peak endemic coronavirus activity occurs during the nadir of rhinovirus/enterovirus and parainfluenza activity. Conclusion: Healthcare settings, assisted-living and long-term care homes, schools and essential services employers should anticipate and have contingencies for seasonal outbreaks of SARS-CoV-2 and co-circulating respiratory viruses during peak seasons. Given the likelihood of co-circulation, diagnostic multiplex testing targeting co-circulating pathogens may be more efficient than single target assays for symptomatic individuals if a seasonal pattern to coronavirus disease 2019 (COVID-19) is established.


2021 ◽  
Vol 47 (3) ◽  
pp. 145-151
Author(s):  
Philippe Lagacé-Wiens ◽  
Jared Bullard ◽  
Roy Cole ◽  
Paul Van Caeseele

Background: Like endemic coronaviruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is believed to have emerged in humans from a zoonotic source and may ultimately develop a seasonal pattern. A seasonal pattern, particularly if combined with other seasonal outbreaks of respiratory virus infections, may have significant impacts on the healthcare system. We evaluated the seasonal pattern of existing endemic coronaviruses and several other common respiratory viruses to determine the potential impacts of added burden of respiratory disease should SARS-CoV-2 establish seasonality. Methods: National surveillance data for laboratory confirmations of endemic coronaviruses, influenza A and B viruses, rhinovirus/enterovirus, human metapneumovirus, respiratory syncytial virus and parainfluenza virus for the past 10 years were obtained from the Government of Canada Open Data and FluWatch. Epidemic curves were generated from total case numbers and percent of samples testing positive for each respiratory virus by epidemiological week. Results: In Canada, endemic coronaviruses and other common respiratory viruses cause annual seasonal outbreaks in the winter months. Should SARS-CoV-2 develop a seasonal pattern similar to endemic coronaviruses and respiratory viruses, co-circulation would be expected to peak between January and March. Peak endemic coronavirus activity occurs during the nadir of rhinovirus/enterovirus and parainfluenza activity. Conclusion: Healthcare settings, assisted-living and long-term care homes, schools and essential services employers should anticipate and have contingencies for seasonal outbreaks of SARS-CoV-2 and co-circulating respiratory viruses during peak seasons. Given the likelihood of co-circulation, diagnostic multiplex testing targeting co-circulating pathogens may be more efficient than single target assays for symptomatic individuals if a seasonal pattern to coronavirus disease 2019 (COVID-19) is established.


2019 ◽  
Vol 31 (1) ◽  
pp. 44-51

Objectives of study are (1) to reinforce the national capacity for diagnosis and antibiogram of some infectious diseases causing severe acute respiratory infection (SARI) and (2) to build a network between hospital and laboratory for the diagnosis and surveillance of SARI in Yangon. This study is a crosssectional hospital- and laboratory-based descriptive study. A total of 825 samples including respiratory samples and blood samples from 511 children attending Yangon Children’s Hospital and Yankin Children’s Hospital from December 2014 to April 2016 for treatment of SARI were included. Identification and antibiotic sensitivity testing were done using Vitek 2. Out of 129 gram-negative bacilli (GNB), K. pneumoniae 32%, P. aeruginosa 18%, A. baumannii 13%, E. coli 9% were mostly isolated. Among 35 gram-positive cocci (GPC), S. aureus 42% and S. pneumoniae 6% were mostly isolated. Multidrug resistance rates were E. coli 100%, K. pneumoniae 95%, A. baumanii 82% and P. aeruginosa 17%. Extended-spectrum beta-latamase (ESBL)-producing K. pneumoniae and E. coli was 6 out of 10 tested organisms. Carbarpenemase-producing GNB and methicillin-resistant Staphylococcus aureus (MRSA) were 21% and 33%, respectively. Virology section tested 529 samples of 490 patients using the FTD33 Multiplex PCR method which can detect 33 pathogens including 20 viruses, 12 bacteria and 1 fungus. Out of 490 patients, 374 were PCR positive. Different types of samples including nasopharyngeal, throat, endotracheal and laryngeal swab, tracheal secretion and bronchoalveolar lavage, were tested. Out of 566 viruses, respiratory syncytial virus (RSV) (19.3%), rhinovirus (17.0%), parechovirus (14.3%), bocavirus (11.1%), adenovirus (10.2%), metapneumo-virus A and B (10.2%), parainfluenza virus (5.7%), enterovirus (3.0%), influenza A virus (2.8%), coronavirus (4%), parainfluenza virus (0.9%) and influenza C virus (0.4%) were detected. This study highlighted the etiological agents of bacteria, viruses and drug-resistant bacterial pathogens in SARI.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 234
Author(s):  
Sarah Al-Beltagi ◽  
Cristian Alexandru Preda ◽  
Leah V. Goulding ◽  
Joe James ◽  
Juan Pu ◽  
...  

The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG’s antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.


2021 ◽  
Vol 9 (6) ◽  
pp. 1293
Author(s):  
Gaspar A. Pacheco ◽  
Nicolás M. S. Gálvez ◽  
Jorge A. Soto ◽  
Catalina A. Andrade ◽  
Alexis M. Kalergis

The human respiratory syncytial virus (hRSV) is one of the leading causes of acute lower respiratory tract infections in children under five years old. Notably, hRSV infections can give way to pneumonia and predispose to other respiratory complications later in life, such as asthma. Even though the social and economic burden associated with hRSV infections is tremendous, there are no approved vaccines to date to prevent the disease caused by this pathogen. Recently, coinfections and superinfections have turned into an active field of study, and interactions between many viral and bacterial pathogens have been studied. hRSV is not an exception since polymicrobial infections involving this virus are common, especially when illness has evolved into pneumonia. Here, we review the epidemiology and recent findings regarding the main polymicrobial infections involving hRSV and several prevalent bacterial and viral respiratory pathogens, such as Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Klebsiella pneumoniae, human rhinoviruses, influenza A virus, human metapneumovirus, and human parainfluenza viruses. As reports of most polymicrobial infections involving hRSV lack a molecular basis explaining the interaction between hRSV and these pathogens, we believe this review article can serve as a starting point to interesting and very much needed research in this area.


2010 ◽  
Vol 35 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Linda S. M. Ooi ◽  
Wing-Shan Ho ◽  
Karry L. K. Ngai ◽  
Li Tian ◽  
Paul K. S. Chan ◽  
...  

2021 ◽  
pp. 019262332110044
Author(s):  
Hye-Youn Cho ◽  
Soojung Park ◽  
Laura Miller ◽  
Huei-Chen Lee ◽  
Robert Langenbach ◽  
...  

Mucin-5AC (MUC5AC) is a major secreted mucin in pathogenic airways. To determine its role in mucus-related airway disorders, Muc5ac-deficient ( Muc5ac−/−) and wild-type ( Muc5ac+/+) mice were compared in bleomycin-induced pulmonary fibrosis, respiratory syncytial virus (RSV) disease, and ozone toxicity. Significantly greater inflammation and fibrosis by bleomycin were developed in Muc5ac−/− lungs compared to Muc5ac+/+ lungs. More severe mucous cell metaplasia in fibrotic Muc5ac−/− lungs coincided with bronchial Muc2, Muc4, and Muc5b overexpression. Airway RSV replication was higher in Muc5ac−/− than in Muc5ac+/+ during early infection. RSV-caused pulmonary epithelial death, bronchial smooth muscle thickening, and syncytia formation were more severe in Muc5ac−/− compared to Muc5ac+/+. Nasal septal damage and subepithelial mucoserous gland enrichment by RSV were greater in Muc5ac−/− than in Muc5ac+/+. Ozone exposure developed more severe nasal airway injury accompanying submucosal gland hyperplasia and pulmonary proliferation in Muc5ac−/− than in Muc5ac+/+. Ozone caused periodic acid-Schiff-positive secretion only in Muc5ac−/− nasal airways. Lung E-cadherin level was relatively lower in Muc5ac−/− than in Muc5ac+/+ basally and after bleomycin, RSV, and ozone exposure. Results indicate that MUC5AC is an essential mucosal component in acute phase airway injury protection. Subepithelial gland hyperplasia and adaptive increase of other epithelial mucins may compensate airway defense in Muc5ac−/− mice.


PEDIATRICS ◽  
1980 ◽  
Vol 66 (1) ◽  
pp. 56-62
Author(s):  
Sergio Stagno ◽  
Linda L. Pifer ◽  
Walter T. Hughes ◽  
Dana M. Brasfield ◽  
Ralph E. Tiller

Of 67 infants enrolled in a prospective study of infant pneumonia ten (14%) had evidence of Pneumocystis carinii infection. Diagnosis was achieved by demonstrating circulating P carinii antigens by counterimmunoelectrophoresis in all ten cases and by histopathology in the only infant who underwent an open lung biopsy. Antigenemia did not occur in 64 control infants (P = .003), nor in 57 patients of similar age who were hospitalized with pneumonitis due to Chlamydia trachomatis, respiratory syncytial virus, cytomegalovirus, adenovirus, and influenza A and influenza B viruses. None of the ten infants with P carinii pneumonitis had evidence of a primary immunodeficiency nor had any received immunosuppressive medication. These patients were hospitalized at a mean age of 6 weeks (range 2 to 12) and their illness was characterized by its afebrile course, presentation in crisis with severe respiratory distress, apnea, tachypnea, cough, increased IgM, and bilateral pulmonary infiltrates with hyperaeration. The clinical features of P carinii pneumonitis were indistinguishable from those of C trachomatis and cytomegalovirus pneumonia. Treatment with trimethoprim-sulfamethoxazole was associated with rapid disappearance of circulating antigens; however, the small number of patients studied did not permit an analysis of its clinical efficacy. These results indicate that P carinii singly or in combination with other infectious agents may be an important cause of pneumonitis in young, immunocompetent infants with no underlying illnesses.


Sign in / Sign up

Export Citation Format

Share Document