scholarly journals The parametric study of hybrid nanofluid flow with heat transition characteristics over a fluctuating spinning disk

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0254457
Author(s):  
Xiao-Hong Zhang ◽  
Ebrahem A. Algehyne ◽  
Maryam G. Alshehri ◽  
Muhammad Bilal ◽  
Muhammad Altaf Khan ◽  
...  

The study explored the 3D numerical solution of an unsteady Ag-MgO/water hybrid nanofluid flow with mass and energy transmission generated by a wavy rotating disc moving up and down. The nanofluid is generated in the context of Ag-MgO nanomaterials. Magnesium oxide and silver nanoparticles have been heavily reported to have broad-spectrum antibacterial operations among metal oxides and metals. Silver nanoparticles are without a doubt the most commonly used inorganic nanoparticles, with numerous innovations in biomaterial’s detection and antimicrobial operations. However, in current paper, the intention of the analysis is to boost thermal energy transmitting rates for a range of industrial implementations. When compared to a flat surface, energy transition is increased up to 15% due to the wavy swirling surface. The problem has been formulated as a system of PDEs, which included the Navier Stokes and Maxwell equations. Following that, the modeled equations are reduced to a dimensionless system of differential equations. The derived equations are then solved numerically using the Parametric Continuation Method (PCM). The findings are displayed graphically and debated. The geometry of a spinning disc is thought to have a positive impact on velocity and heat energy transfer. The insertion of nanostructured materials (silver and magnesium-oxide) increased the carrier fluid’s thermal properties considerably. It is more effective at dealing with low energy transmission.

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hussam Alrabaiah ◽  
Muhammad Bilal ◽  
Muhammad Altaf Khan ◽  
Taseer Muhammad ◽  
Endris Yimer Legas

AbstractThe silver, magnesium oxide and gyrotactic microorganism-based hybrid nanofluid flow inside the conical space between disc and cone is addressed in the perspective of thermal energy stabilization. Different cases have been discussed between the spinning of cone and disc in the same or counter wise directions. The hybrid nanofluid has been synthesized in the presence of silver Ag and magnesium oxide MgO nanoparticulate. The viscous dissipation and the magnetic field factors are introduced to the modeled equations. The parametric continuation method (PCM) is utilized to numerically handle the modeled problem. Magnesium oxide is chemically made up of Mg2+ and O2- ions that are bound by a strong ionic connection and can be made by pyrolyzing Mg(OH)2 (magnesium hydroxide) and MgCO3 (magnesium carbonate) at high temperature (700–1500 °C). For metallurgical, biomedical and electrical implementations, it is more efficient. Similarly, silver nanoparticle's antibacterial properties could be employed to control bacterial growth. It has been observed that a circulating disc with a stationary cone can achieve the optimum cooling of the cone-disk apparatus while the outer edge temperature remains fixed. The thermal energy profile remarkably upgraded with the magnetic effect, the addition of nanoparticulate in base fluid and Eckert number.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1032
Author(s):  
Muhammad Bilal ◽  
Anwar Saeed ◽  
Taza Gul ◽  
Ishtiaq Ali ◽  
Wiyada Kumam ◽  
...  

The analysis explored a numerical simulation of microorganisms, carbon nanotubes (CNTs) and ferric oxide water-based hybrid nanofluid flow induced by a wavy fluctuating spinning disc with energy propagation. In the presence of CNTs and magnetic nanoparticulates, the nanofluid is synthesized. The exceptional tensile strength, flexibility, and electrical and thermal conductivity of carbon nanotubes and iron nanoparticles have been extensively reported. The motive of the proposed analysis is to optimize thermal energy conveyance efficiency for a spectrum of industrial and biomedical applications. The phenomena have been expressed as a system of partial differential equations (PDEs) which contain the momentum, energy, concentration, and motile microorganism equations. The modeled equations have been diminished to the dimensionless system of nonlinear ODEs through a similarity framework. The Matlab built-in package boundary value solver has been utilized to solve the obtained system of ODEs. The findings are compared to the PCM technique for validity purposes. The results are illustrated graphically and discussed. The layout of a rotating disc has a positive effect on energy transition and velocity profile. The irregular rotating surface increases energy progression up to 15% relative to a smooth surface. The accumulation of nanocomposites (CNTs and magnetic nanoparticles) significantly enhanced the thermal capabilities of the liquid medium. When operating with a low distribution, it is more impactful.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ali Ahmadian ◽  
Muhammad Bilal ◽  
Muhammad Altaf Khan ◽  
Muhammad Imran Asjad

Abstract A three dimensional (3D) numerical solution of unsteady, Ag-MgO hybrid nanoliquid flow with heat and mass transmission caused by upward/downward moving of wavy spinning disk has been scrutinized. The magnetic field has been also considered. The hybrid nanoliquid has been synthesized in the presence of Ag-MgO nanoparticles. The purpose of the study is to improve the rate of thermal energy transmission for several industrial purposes. The wavy rotating surface increases the heat transmission rate up to 15%, comparatively to the flat surface. The subsequent arrangement of modeled equations is diminished into dimensionless differential equation. The obtained system of equations is further analytically expounded via Homotopy analysis method HAM and the numerical Parametric continuation method (PCM) method has been used for the comparison of the outcomes. The results are graphically presented and discussed. It has been presumed that the geometry of spinning disk positively affects the velocity and thermal energy transmission. The addition of hybrid nanoparticles (silver and magnesium-oxide) significantly improved thermal property of carrier fluid. It uses is more efficacious to overcome low energy transmission. Such as, it provides improvement in thermal performance of carrier fluid, which play important role in power generation, hyperthermia, micro fabrication, air conditioning and metallurgical field.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 448
Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop

This study investigates a hybrid nanofluid flow towards a stagnation region of a vertical plate with radiation effects. The hybrid nanofluid consists of copper (Cu) and alumina (Al2O3) nanoparticles which are added into water to form Cu-Al2O3/water nanofluid. The stagnation point flow describes the fluid motion in the stagnation region of a solid surface. In this study, both buoyancy assisting and opposing flows are considered. The similarity equations are obtained using a similarity transformation and numerical results are obtained via the boundary value problem solver (bvp4c) in MATLAB software. Findings discovered that dual solutions exist for both opposing and assisting flows. The heat transfer rate is intensified with the thermal radiation (49.63%) and the hybrid nanoparticles (32.37%).


Author(s):  
Azad Hussain ◽  
Mohammed Hamed Alshbool ◽  
Aishah Abdussattar ◽  
Aysha Rehman ◽  
Hijaz Ahmad ◽  
...  

Heat Transfer ◽  
2021 ◽  
Author(s):  
Anthonysamy John Christopher ◽  
Nanjundan Magesh ◽  
Ramanahalli Jayadevamurthy Punith Gowda ◽  
Rangaswamy Naveen Kumar ◽  
Ravikumar Shashikala Varun Kumar

Sign in / Sign up

Export Citation Format

Share Document