scholarly journals The effects of post-operative oxygen supply on blood oxygenation and acid-base status in rats anaesthetized with fentanyl/fluanisone and midazolam

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255829
Author(s):  
Leander Gaarde ◽  
Stefanie Kolstrup ◽  
Peter Bollen

In anaesthetic practice the risk of hypoxia and arterial blood gas disturbances is evident, as most anaesthetic regimens depress the respiratory function. Hypoxia may be extended during recovery, and for this reason we wished to investigate if oxygen supply during a one hour post-operative period reduced the development of hypoxia and respiratory acidosis in rats anaesthetized with fentanyl/fluanisone and midazolam. Twelve Sprague Dawley rats underwent surgery and were divided in two groups, breathing either 100% oxygen or atmospheric air during a post-operative period. The peripheral blood oxygen saturation and arterial acid-base status were analyzed for differences between the two groups. We found that oxygen supply after surgery prevented hypoxia but did not result in a significant difference in the blood acid-base status. All rats developed respiratory acidosis, which could not be reversed by supplemental oxygen supply. We concluded that oxygen supply improved oxygen saturation and avoided hypoxia but did not have an influence on the acid-base status.

1989 ◽  
Vol 66 (6) ◽  
pp. 2895-2900 ◽  
Author(s):  
T. I. Musch ◽  
B. S. Warfel ◽  
R. L. Moore ◽  
D. R. Larach

We compared the effects of three different anesthetics (halothane, ketamine-xylazine, and diethyl ether) on arterial blood gases, acid-base status, and tissue glycogen concentrations in rats subjected to 20 min of rest or treadmill exercise (10% grade, 28 m/min). Results demonstrated that exercise produced significant increases in arterial lactate concentrations along with reductions in arterial Pco2 (PaCO2) and bicarbonate concentrations in all rats compared with resting values. Furthermore, exercise produced significant reductions in the glycogen concentrations in the liver and soleus and plantaris muscles, whereas the glycogen concentrations found in the diaphragm and white gastrocnemius muscles were similar to those found at rest. Rats that received halothane and ketamine-xylazine anesthesia demonstrated an increase in Paco2 and a respiratory acidosis compared with rats that received either anesthesia. These differences in arterial blood gases and acid-base status did not appear to have any effect on tissue glycogen concentrations, because the glycogen contents found in liver and different skeletal muscles were similar to one another cross all three anesthetic groups. These data suggest that even though halothane and ketamine-xylazine anesthesia will produce a significant amount of ventilatory depression in the rat, both anesthetics may be used in studies where changes in tissue glycogen concentrations are being measured and where adequate general anesthesia is required.


Author(s):  
Guy M. Hatch ◽  
Liza Ashbrook ◽  
Aric A. Prather ◽  
Andrew D. Krystal

Snoring gets no respect.  It also gets little to no medical therapy.  Why is this?  How can something that is clearly pathological based on epidemiologic research not be diagnosed and treated with effective therapy?  The problem is the lack of a credible, objective index of pathology during snoring.  Pulse oximetry detects drops in arterial blood oxygen saturation (SpO2) associated with obstructive sleep apnea and hypopnea events in polysomnographic (PSG) testing.  When no desaturation is present, evidence of sleep disturbance is required to indicate the presence of pathology.  However, obstruction at the mild end of the continuum of sleep disordered breathing (SDB) can occur without producing a drop in SpO2 or sleep disturbance; in which case it is referred to as ‘primary snoring.’ Although statistically associated with co-morbidities of SDB, without there being a drop in SpO2 or sleep disturbance, primary snoring is not thought to be pathologic enough to warrant diagnosis or treatment.  One promising means of detecting the pathological processes associated with primary snoring is molecular tissue oximetry, which detects skin tissue oxygen need, vs. oxygen supply.   In cases of hypoxic challenge, regulatory mechanisms restrict blood flow to the skin to preferentially maintain blood oxygen supply to more vital organs.  As a result, molecular tissue oximetry of the skin is a more sensitive measure of inadequate breathing than pulse oximetry measuring blood oxygen saturation.  In this article we review molecular tissue oximetry technology and methodology and make the case that it is a promising tool for identifying pathology occurring in association with primary snoring.


Author(s):  
Gavin M. Joynt ◽  
Gordon Y. S. Choi

Arterial blood gases allow the assessment of patient oxygenation, ventilation, and acid-base status. Blood gas machines directly measure pH, and the partial pressures of carbon dioxide (PaCO2) and oxygen (PaO2) dissolved in arterial blood. Oxygenation is assessed by measuring PaO2 and arterial blood oxygen saturation (SaO2) in the context of the inspired oxygen and haemoglobin concentration, and the oxyhaemoglobin dissociation curve. Causes of arterial hypoxaemia may often be elucidated by determining the alveolar–arterial oxygen gradient. Ventilation is assessed by measuring the PaCO2 in the context of systemic acid-base balance. A rise in PaCO2 indicates alveolar hypoventilation, while a decrease indicates alveolar hyperventilation. Given the requirement to maintain a normal pH, functioning homeostatic mechanisms result in metabolic acidosis, triggering a compensatory hyperventilation, while metabolic alkalosis triggers a compensatory reduction in ventilation. Similarly, when primary alveolar hypoventilation generates a respiratory acidosis, it results in a compensatory increase in serum bicarbonate that is achieved in part by kidney bicarbonate retention. In the same way, respiratory alkalosis induces kidney bicarbonate loss. Acid-base assessment requires the integration of clinical findings and a systematic interpretation of arterial blood gas parameters. In clinical use, traditional acid-base interpretation rules based on the bicarbonate buffer system or standard base excess estimations and the interpretation of the anion gap, are substantially equivalent to the physicochemical method of Stewart, and are generally easier to use at the bedside. The Stewart method may have advantages in accurately explaining certain physiological and pathological acid base problems.


1996 ◽  
Vol 199 (4) ◽  
pp. 933-940
Author(s):  
B Tufts ◽  
S Currie ◽  
J Kieffer

In vivo experiments were carried out to determine the relative effects of carbonic anhydrase (CA) infusion or inhibition on carbon dioxide (CO2) transport and acid-base status in the arterial and venous blood of sea lampreys recovering from exhaustive exercise. Infusion of CA into the extracellular fluid did not significantly affect CO2 transport or acid-base status in exercised lampreys. In contrast, infusion of the CA inhibitor acetazolamide resulted in a respiratory acidosis in the blood of recovering lampreys. In acetazolamide-treated lampreys, the post-exercise extracellular pH (pHe) of arterial blood was significantly lower than that in the saline-infused (control) lampreys. The calculated arterial and venous partial pressure of carbon dioxide (PCO2) and the total CO2 concentration in whole blood (CCO2wb) and red blood cells (CCO2rbc) during recovery in the acetazolamide-infused lampreys were also significantly greater than those values in the saline-infused control lampreys. These results suggest that the CO2 reactions in the extracellular compartment of lampreys may already be in equilibrium and that the access of plasma bicarbonate to CA is probably not the sole factor limiting CO2 transport in these animals. Furthermore, endogenous red blood cell CA clearly has an important role in CO2 transport in exercising lampreys.


1979 ◽  
Vol 82 (1) ◽  
pp. 345-355
Author(s):  
R. G. BOUTILIER ◽  
D. J. RANDALL ◽  
G. SHELTON ◽  
D. P. TOEWS

Cutaneous CO2 excretion is reduced as the skin dries during dehydration but an increase in breath frequency acts to regulate the arterial blood Pcoco2 and thus pHα. Moreover, the toad does not urinate and water is reabsorbed from the bladder to replace that lost by evaporation at the skin and lung surfaces. The animal does, however, produce a very acid bladder urine to conserve circulating levels of plasma [HCO3-] and this together with an increased ventilation effectively maintains the blood acid-base status for up to 48 h of dehydration in air. Water loss and acid production are presumably also reduced by the animal's behaviour; animals remain still, in a crouched position or in a pile if left in groups. Dehydrated toads are less able than hydrated toads to regulate blood pH during hypercapnia: they hyperventilate and mobilize body bicarbonate stores in much the same fashion as hydrated animals but due to the restrictions on cutaneous CO2 excretion and renal output, there is comparatively little reduction in the PCOCO2 difference between arterial blood and inspired gas thereby resulting in a more severe respiratory acidosis. These factors further contribute to the persistent acidosis which continues even when the animals are returned to air.


1981 ◽  
Vol 9 (1) ◽  
pp. 40-42 ◽  
Author(s):  
A. J. Crockett ◽  
E. McIntyre ◽  
R. Ruffin ◽  
J. H. Alpers

The effects of liquid heparin on the analysis of acid/base status of arterial blood include a reduction in Pco2 and an increase in Po2. A study was performed to compare a lyophilised heparin syringe with a liquid heparin glass syringe for collection of blood for acid/base analysis. No significant difference between the variables measured in blood taken in the two syringes was demonstrated.


2018 ◽  
Vol 6 (9a) ◽  
pp. 74
Author(s):  
Hüseyin Eroğlu ◽  
Bülent Okyaz ◽  
Ünal Türkçapar

The aim of this study was to investigate the effect of acute aerobic exercise on arterial blood hemoglobin oxygen saturation in athletes.36 healthy male athletes participated voluntarily with the age (20.9 ± 1.6 yrs), weight (69.8 ± 5.5 kg) and height (169.6 ± 3.7 cm), who studied at school of physical education and practiced 90 minutes of exercise 6 days a week,. This study was conducted with the approval of Ethics Committee of Health Sciences Institute with session date specified in article of Ethics Committee, dated in 13.09.2017.The heights, body weights and VO2 max values of participants were determined by VO2 max shuttle run test once, pre- and post-shuttle run heart rates and oxygen saturations were determined by pulse oximetry. The statistical analysis of data was made in SPSS 21.0 for windows package program. The normality test of data was done by Kolmogorov-Smirnov test, and it was found that data was not normally distributed. The Wilcoxon test, a nonparametric test, was used to determine for difference between pre-test and post-test. The significance value was taken at level 0.01.As a result of statistical analyses, it was determined that there was a statistically significant difference between oxygen saturations and heart rates of participants before and after exercise. In conclusion, it can be said that acute aerobic exercise can reduce oxygen saturation.


2021 ◽  
pp. 239-245
Author(s):  
Xiao-Chen Bao ◽  
◽  
Hong Chen ◽  
Yi-Qun Fang ◽  
Nang Wang ◽  
...  

Breathing less than 50 kPa of oxygen over time can lead to pulmonary oxygen toxicity (POT). Vital capacity (VC) as the sole parameter for POT has its limitations. In this study we try to find out the changes of acid-base status in a POT rat model. Fifty male rats were randomly divided into five groups, exposed to 230 kPa oxygen for three, six, nine and 12 hours, respectively. Rats exposed to air were used as controls. After exposure the mortality and behavior of rats were observed. Arterial blood samples were collected for acid-base status detection and wet-dry (W/D) ratios of lung tissues were tested. Results showed that the acid-base status in rats exposed to 230 kPa oxygen presented a dynamic change. The primary status was in the compensatory period when primary respiratory acidosis was mixed with compensated metabolic alkalosis. Then the status changed to decompensated alkalosis and developed to decompensated acidosis in the end. pH, PCO2, HCO3-, TCO2, and BE values had two phases: an increase and a later decrease with increasing oxygen exposure time, while PaO2 and lung W/D ratio showed continuously increasing trends with the extension of oxygen exposure time. Lung W/D ratio was significantly associated with PaO2 (r = 0.6385, p = 0.002), while other parameters did not show a significant correlation. It is concluded that acid-base status in POT rats presents a dynamic change: in the compensatory period first, then turns to decompensated alkalosis and ends up with decompensated acidosis status. Blood gas analysis is a useful method to monitor the development of POT.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 422-422
Author(s):  
Rebecca L Moore ◽  
Cierrah J Kassetas ◽  
Leslie A LeKatz ◽  
Bryan W Neville

Abstract One hundred and twenty-six yearling angus steers (initial body weight 445.87 ± 7.13 kg) were utilized in a 2 x 2 factorial design to evaluate the impacts of bunk management and modified distillers grains plus solubles (mDGS) inclusion on feedlot performance, hydrogen sulfide concentrations and blood oxygen saturation. Treatments included bunk management strategy either control bunk management (CON; clean bunks at the time of next day’s feeding) or long bunk management (LONG; feed remaining at time of next day’s feeding), and two inclusion rates of mDGS either 25% or 50% (DM Basis). On d 0, 7, 14, 21, 28 and 35 rumen gas samples were collected via rumenocentesis, and arterial blood samples were collected on two steers from each pen. No differences (P ≥ 0.09) were observed for dry matter intake, average daily gain and gain-to-feed ratio for bunk management or mDGS inclusion. Hot carcass weight, ribeye area, marbling score and quality grade were not affected (P ≥ 0.48) by either bunk management or mDGS inclusion. Back fat was greater (P = 0.04) for CON steers compared to LONG (1.30 vs 1.12 ± 0.05cm, respectively), but was not affected (P = 0.59) by mDGS inclusion. Steers on CON had greater (P = 0.03) yield grades compared to LONG (3.21 vs 2.96 ± 0.11, respectively). Bunk management strategy did not impact hydrogen sulfide concentrations or blood oxygen saturation (P = 0.82). Hydrogen sulfide concentrations increased (P < 0.001) with increasing mDGS inclusion. Blood oxygen saturation was influenced by day of sampling (P = 0.01). Blood oxygen saturation was not affected (P = 0.07) by mDGS inclusion. The fact that ruminal hydrogen sulfide concentrations increased while blood oxygen saturation remained similar raises questions about the quantity of hydrogen sulfide and metabolic fate of excess hydrogen sulfide in the blood of ruminant animals.


2015 ◽  
Vol 27 (01) ◽  
pp. 1550004 ◽  
Author(s):  
Audrey K. C. Huong ◽  
Xavier T. I. Ngu

We present the use of Extended Modified Lambert–Beer model for optical monitoring of mean blood oxygen saturation ( S m O 2) via a fitting procedure. This work focuses on the absorption characteristics of hemoglobin derivatives in the wavelength range of 520–600 nm to give the best estimates of S m O 2. The study of the feasibility of applying this analytic method to skin oximetry is via spectroscopy data collected from fingertips of four healthy volunteers both at rest and during arterial blood occlusion condition. The results revealed a decrease in the mean of mean and standard deviation of S m O 2 value of fingertips from 94.5 ± 2.19% when volunteers were at rest to 56.76 ± 5.8% during the arterial blood occlusion measurement. The larger variation in the value estimated for blood occlusion condition could be a result of differences in volunteers' physical fitness and hypertension status. These estimated S m O 2 values agreed reasonably well with the value reported in most of the previous studies. This work concluded that the proposed technique can potentially be used as a complementary technique to clinical assessment of skin grafts and burnt skin.


Sign in / Sign up

Export Citation Format

Share Document