scholarly journals Evaluation of Lyophilized Heparin Syringes for the Collection of Arterial Blood for Acid Base Analysis

1981 ◽  
Vol 9 (1) ◽  
pp. 40-42 ◽  
Author(s):  
A. J. Crockett ◽  
E. McIntyre ◽  
R. Ruffin ◽  
J. H. Alpers

The effects of liquid heparin on the analysis of acid/base status of arterial blood include a reduction in Pco2 and an increase in Po2. A study was performed to compare a lyophilised heparin syringe with a liquid heparin glass syringe for collection of blood for acid/base analysis. No significant difference between the variables measured in blood taken in the two syringes was demonstrated.

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255829
Author(s):  
Leander Gaarde ◽  
Stefanie Kolstrup ◽  
Peter Bollen

In anaesthetic practice the risk of hypoxia and arterial blood gas disturbances is evident, as most anaesthetic regimens depress the respiratory function. Hypoxia may be extended during recovery, and for this reason we wished to investigate if oxygen supply during a one hour post-operative period reduced the development of hypoxia and respiratory acidosis in rats anaesthetized with fentanyl/fluanisone and midazolam. Twelve Sprague Dawley rats underwent surgery and were divided in two groups, breathing either 100% oxygen or atmospheric air during a post-operative period. The peripheral blood oxygen saturation and arterial acid-base status were analyzed for differences between the two groups. We found that oxygen supply after surgery prevented hypoxia but did not result in a significant difference in the blood acid-base status. All rats developed respiratory acidosis, which could not be reversed by supplemental oxygen supply. We concluded that oxygen supply improved oxygen saturation and avoided hypoxia but did not have an influence on the acid-base status.


2021 ◽  
Vol 2 ◽  
pp. 14-22
Author(s):  
Oleksii Vlasov

Introduction: Congenital malformations (CM) are most common in newborns and infants in the first year of life and require surgical correction in the first hours, days, months of life. Surgical interventions in severely ill babies with malformations can lead to catabolic stress, circulatory and respiratory disorders, metabolism shifts, water-electrolyte, protein, and acid-base status disorders. This study aimed to compare acid-base status in newborns and infants with congenital surgical pathology under different types of combined anesthesia.  Materials and methods: This retrospective study included 150 newborns and infants with CM who required surgery. The patients were divided into three groups based on types of provided anesthesia: inhalation by Sevoran (sevoflurane) and regional anesthesia (group I); inhalation of Sevoran and intravenous anesthesia by Fentanyl (group II); and intravenous combination of Fentanyl and 20% Sodium Oxybutyrate (group III). The analysis included: acid-base status, peripheral oximetry, and the need for an oxygen mixture inhaled by the patient. Results In group I, there was a significant reduction in partial tension of CO2 and increased pH from the pre-surgical status, at the time of induction of anesthesia, during the most painful, traumatic stage, and after surgery compared to group II and III. Peripheral O2 saturation was not critically reduced at all stages of observation except in babies of group I compared to group III at the stage of induction of anesthesia (97.79 ± 2.45 vs. 98.79 ± 1.63, p = 0.0194) and at the most painful period of surgery (96.29 ± 3.47 vs. 98.10 ± 2.47, p = 0.0368). In group I, newborns and infants required higher oxygen concentrations in the inhalation mixture. There was a significant difference in FiO2 between groups I and III during the most painful stage of surgery (0.47 ± 0.29 and 0.33 ± 0.2, p = 0.0071), and immediately after surgery (0.34 ± 0, 19 and 0.26 ± 0.13, p = 0.0246). Conclusion: Among the newborns and infants with CM requiring surgical intervention and combined anesthesia, the most substantial acid-base status changes were observed in the group where anesthesia was provided by Sevoran (sevoflurane) and regional anesthesia (Group I).


2007 ◽  
Vol 47 (1) ◽  
pp. 35
Author(s):  
Hari Kushartono ◽  
Antonius H. Pudjiadi ◽  
Susetyo Harry Purwanto ◽  
Imral Chair ◽  
Darlan Darwis ◽  
...  

Background Base excess is a single variable used to quantifymetabolic component of acid base status. Several researches havecombined the traditional base excess method with the Stewartmethod for acid base physiology called as Fencl-Stewart method.Objective The purpose of the study was to compare two differentmethods in identifying hyperlactacemia in pediatric patients withcritical illness.Methods The study was performed on 43 patients admitted tothe pediatric intensive care unit of Cipto MangunkusumoHospital, Jakarta. Sodium, potassium, chloride, albumin, lactateand arterial blood gases were measured. All samples were takenfrom artery of all patients. Lactate level of >2 mEq/L was definedas abnormal. Standard base excess (SBE) was calculated fromthe standard bicarbonate derived from Henderson-Hasselbalchequation and reported on the blood gas analyzer. Base excessunmeasured anions (BE UA ) was calculated using the Fencl-Stewartmethod simplified by Story (2003). Correlation between lactatelevels in traditional and Fencl-Stewart methods were measuredby Pearson’s correlation coefficient .Results Elevated lactate levels were found in 24 (55.8%) patients.Lactate levels was more strongly correlated with BE UA (r = - 0.742,P<0.01) than with SBE (r = - 0.516, P<0.01).Conclusion Fencl-Stewart method is better than traditionalmethod in identifying patients with elevated lactate levels, so theFencl-Stewart method is suggested to use in clinical practice.


PEDIATRICS ◽  
1975 ◽  
Vol 56 (6) ◽  
pp. 999-1004
Author(s):  
Daniel C. Shannon ◽  
Robert De Long ◽  
Barry Bercu ◽  
Thomas Glick ◽  
John T. Herrin ◽  
...  

The initial acid-base status of eight survivors of Reye's syndrome was characterized by acute respiratory alkalosis (Pco2=32 mm Hg; Hco3-= 22.0 mEq/liter) while that of eight children who died was associated with metabolic acidosis as well (HCO3-=10.0 mEq/liter). Arterialinternal jugular venous ammonia concentration differences on day 1 (299 mg/100 ml) and day 2 (90 mg/ 100 ml) reflected cerebral uptake of ammonia while those on days 3 and 4 (-43 and -55 mg/100 ml) demonstrated cerebral release. Arterial blood hyperammonemia can be detoxified safely in the brain as long as the levels do not exceed approximately 300µg/100 ml. Beyond that level lactic acidosis is observed, particularly in cerebral venous drainage. Arterial blood hyperammonemia was also related to the extent of alveolar hyperventilation. These findings are very similar to those seen in experimental hyperammonemia and support the concept that neurotoxicity in children with Reye's syndrome is at least partly due to impaired oxidative metabolism secondary to hyperammonemia.


1992 ◽  
Vol 73 (6) ◽  
pp. 2297-2304 ◽  
Author(s):  
R. L. Pieschl ◽  
P. W. Toll ◽  
D. E. Leith ◽  
L. J. Peterson ◽  
M. R. Fedde

To determine the factors responsible for changes in [H+] during and after sprint exercise in the racing greyhound, Stewart's quantitative acid-base analysis was applied to arterial blood plasma samples taken at rest, at 8-s intervals during exercise, and at various intervals up to 30 min after a 402-m spring (approximately 30 s) on the track. [Na+], [K+], [Cl-], [total Ca], [lactate], [albumin], [Pi], PCO2, and pH were measured, and the [H+] was calculated from Stewart's equations. This short sprint caused all measured variables to change significantly. Maximal changes were strong ion difference decreased from 36.7 meq/l at rest to 16.1 meq/l; [albumin] increased from 3.1 g/dl at rest to 3.7 g/dl; PCO2, after decreasing from 39.6 Torr at rest to 27.9 Torr immediately prerace, increased during exercise to 42.8 Torr and then again decreased to near 20 Torr during most of recovery; and [H+] rose from 36.6 neq/l at rest to a peak of 76.6 neq/l. The [H+] calculated using Stewart's analysis was not significantly different from that directly measured. In addition to the increase in lactate and the change in PCO2, changes in [albumin], [Na+], and [Cl-] also influenced [H+] during and after sprint exercise in the running greyhound.


1989 ◽  
Vol 66 (6) ◽  
pp. 2895-2900 ◽  
Author(s):  
T. I. Musch ◽  
B. S. Warfel ◽  
R. L. Moore ◽  
D. R. Larach

We compared the effects of three different anesthetics (halothane, ketamine-xylazine, and diethyl ether) on arterial blood gases, acid-base status, and tissue glycogen concentrations in rats subjected to 20 min of rest or treadmill exercise (10% grade, 28 m/min). Results demonstrated that exercise produced significant increases in arterial lactate concentrations along with reductions in arterial Pco2 (PaCO2) and bicarbonate concentrations in all rats compared with resting values. Furthermore, exercise produced significant reductions in the glycogen concentrations in the liver and soleus and plantaris muscles, whereas the glycogen concentrations found in the diaphragm and white gastrocnemius muscles were similar to those found at rest. Rats that received halothane and ketamine-xylazine anesthesia demonstrated an increase in Paco2 and a respiratory acidosis compared with rats that received either anesthesia. These differences in arterial blood gases and acid-base status did not appear to have any effect on tissue glycogen concentrations, because the glycogen contents found in liver and different skeletal muscles were similar to one another cross all three anesthetic groups. These data suggest that even though halothane and ketamine-xylazine anesthesia will produce a significant amount of ventilatory depression in the rat, both anesthetics may be used in studies where changes in tissue glycogen concentrations are being measured and where adequate general anesthesia is required.


1994 ◽  
Vol 14 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Jacques J. Sennesael ◽  
Godelieve C. De Smedt ◽  
Patricia Van der Niepen ◽  
Dierik L. Verbeelen

Objective To assess the possible effects of peritonitis on peritoneal and systemic acid-base status. Design pH, pCO2, lactate, and total leukocyte and differential count were simultaneously determined in the overnight dwell peritoneal dialysis effluent (PDE) and arterial blood in noninfected patients (controls) and on days 1, 3, and 5 from the onset of peritonitis. Setting University multidisciplinary dialysis program. Patients Prospective analysis of 63 peritonitis episodes occurring in 30 adult CAPD patients in a single center. Results In controls, mean (±SD) acid-base parameters were pH 7.41 ±0.05, pCO2 43.5±2.6 mm Hg, lactate 2.5±1.5 mmol/L in the PDE, and pH 7.43±0.04, PaCO2 36.8±3.8 mm Hg, lactate 1.4±0.7 mmol/L in the blood. In sterile (n=6), gram-positive (n=34), and Staphylococcus aureus (n=9) peritonitis PDE pH's on day 1 were, respectively, 7. 29±0.07, 7. 32±0.07, and 7.30±0.08 (p<0.05 vs control). In gram -negative peritonitis (n=14) PDE pH was 7.21 ±0.08 (p<0.05 vs all other groups). A two-to-threefold increase in PDE lactate was observed in all peritonitis groups, but a rise in pCO2 was only seen in gram -negative peritonitis. Acid-base profile of PDE had returned to control values by day 3 in sterile, gram -positive and Staphylococcus aureus peritonitis and by day 5 in gramnegative peritonitis. Despite a slight increase in plasma lactate on the first day of peritonitis, arterial blood pH was not affected by peritonitis. Conclusion PDE pH is decreased in continuous ambulatory peritoneal dialysis (CAPD) peritonitis, even in the absence of bacterial growth. In gram-negative peritonitis, PDE acidosis is more pronounced and prolonged, and pCO2 is markedly increased. Arterial blood pH is not affected by peritonitis.


Sign in / Sign up

Export Citation Format

Share Document