scholarly journals Above-ground carbon stock and REDD+ opportunities of community-managed forests in northern Thailand

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256005
Author(s):  
Siriluck Thammanu ◽  
Hee Han ◽  
Dokrak Marod ◽  
Jamroon Srichaichana ◽  
Joosang Chung

This study aimed to investigate the structure of two deciduous forests and assess their above-ground carbon stock in order to promote community forest management (CFM) for REDD+ opportunities in the Ban Mae Chiang Rai Lum Community Forest in northern Thailand. A systematic sampling method was used to establish twenty-five sample plots of 40 m × 40 m (0.16 ha) each that were used to survey the entire 3,925 ha area of the community forest. Cluster analysis identified two different forest types: dry dipterocarp forest and mixed deciduous forest. It was determined that the above-ground carbon stock did not vary significantly between them. An analysis of carbon sequestration in the community forest indicates that carbon stock increased under CFM from 2007 to 2018 by an estimated 28,928 t C and participation in the carbon market would have yielded approximately US $339,730.43 or US $8.66 /ha/year to the community for that 10-year period. Projections for 2028 reflect that carbon stock will experience continual growth which indicates that maintaining CFM can increase carbon sequestration and reduce CO2 emissions. However, though further growth of carbon stock in the community forest is expected into 2038, that growth would be at a lesser rate than during the preceding decade. This suggests that CFM management should address forest utilization practices with a focus on maintaining long term carbon stock growth. Additional measures to address the impact of drought conditions and to safeguard against forest fires are required to sustain tree species’ growth and expansion in order to increase their carbon accumulation potential. Thailand’s community forest involvement in REDD+ and participation in its international carbon market could create more economic opportunities for local communities.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Rajeev Joshi

Regeneration patterns of species population can address climate change by adaptive evolution or by migrating association to survival in their favorable climate and finally decide the particular forest future. This research examined the status of regeneration and carbon sequestration potential in tropical Sal (Shorea robusta) forest of Kanchanpur district, Nepal. For the study, a total of 63 concentric sample plots were investigated by using systematic sampling with 0.5% sampling intensity. Regeneration status of forest was estimated by calculating the density of each species in each developmental phase. The above-ground carbon stock of trees species were estimated using allometric equations. The studied forests had good regeneration status and Shorea robusta was the dominant species in terms of regeneration and carbon stock. Ramnagar community forest had greater number of seedling, sapling and tree than that of the Ganesh community forest. Reverse J-shaped population curves were recorded at both the study sites. This study provided information about the regeneration status, structure, composition and carbon sequestration potential of tree species which is very necessary for conservation and sustainable management of community forests. Studies indicate that community management has increased the carbon stock of forests and also has promoted the productivity of forests by altering the structure and composition of the community forests.


2021 ◽  
Vol 13 (23) ◽  
pp. 13474
Author(s):  
Siriluck Thammanu ◽  
Hee Han ◽  
E. M. B. P. Ekanayake ◽  
Yoonkoo Jung ◽  
Joosang Chung

Forest ecosystems provide myriad services that are beneficial to local livelihoods. Successful community forest management (CFM) enhances the provision, overall benefit, and effectiveness of the regulation of ecosystem services and contributes to forest conservation efforts. The study area was a deciduous forest in the Ban Mae Chiang Rai Lum Community Forest, which is located in Pa Mae Phrik National Forest Reserve in Thailand’s northern province of Lampang. A systematic sampling of the forest area was conducted, and survey plots were established. A field survey documented 197 plant species from 62 families. A questionnaire that focused on CFM engagement behavior and ecosystem service satisfaction levels was used to interview household representatives. The study found that levels of engagement and the effectiveness of forest management were directly related; increased CFM effectiveness leads to improved ecosystem services. Participation in CFM can improve ecosystem services and enhance livelihoods. Specifically, participation in decision making, forest fire management, check dam construction, benefit sharing, and in forming effective forest regulations positively impacted ecosystem services. In contrast, employing forest patrols adversely affected those services. This knowledge is useful for identifying policies and practices that can maximize ecosystem services to enhance livelihoods and safeguard the forest’s vitality.


2020 ◽  
Author(s):  
Ziying He ◽  
Huaye Sun ◽  
Yisheng Peng ◽  
Zhan Hu ◽  
Yingjie Cao ◽  
...  

Abstract Background:The fast-growing introduced mangrove Sonneratia apetala is widely used for mangrove afforestation and reforestation in China. Some studies suggested that this exotic species outperforms native species in terms of carbon sequestration potential. This study tested the hypothesis that multi-species mangrove plantations might have higher carbon sequestration potential than S. apetala monocultures.Results: Our field measurements at Hanjiang River Estuary (Guangdong province, China) showed that the carbon stock (46.0±3.0 Mg/ha) in S. apetala plantations where the native Kandelia obovata formed an understory shrub layer was slightly higher than that in S. apetala monocultures (36.6±1.3 Mg/ha). Moreover, the carbon stock in monospecific K. obovata stands (106.6±1.4 Mg/ha ) was much larger than that of S. apetala monocultures.Conclusions: Our results show that K. obovata monocultures may have a higher carbon accumulation rate than S. apetala monocultures. Planting K. obovata seedlings in existing S. apetala plantations may enhance the carbon sink associated with these plantations.


2020 ◽  
Vol 5 (3) ◽  
pp. 231-240
Author(s):  
Gisandu K. Malunguja ◽  
Ashalata Devi ◽  
Mhuji Kilonzo ◽  
Chrispinus D.K. Rubanza

Forests play a key role in climate change mitigation through sequestering and storing carbon dioxide from the atmosphere. However, there is inadequate information about carbon accumulation and sequestered by community reserved forests in Tanzania. A study was carried to quantify the amount of carbon sequestered in two forests namely; Nyasamba and Bubinza of Kishapu district, northwestern Tanzania. A ground-based field survey design under a systematic sampling technique was adopted. A total of 45 circular plots (15 m radius) along transects were established. The distances between transect and plots were maintained at 550 and 300 m, respectively. Data on herbaceous C stocking potential was determined using destructive harvest method while tree carbon stocking was estimated by allometric equations. The collected data were organized on excel datasheet followed by descriptive analysis for quantitative information using Computer Microsoft Excel and SPSS software version 20, while soil samples were analyzed based on the standard laboratory procedures. Results revealed higher carbon sequestration of 102.49±39.87 and 117.52±10.27 for soil pools than plants both herbaceous (3.01±1.12 and 6.27±3.79 t CO2e/yr) and trees (5.70±3.15 and 6.60±2.88 t CO2e/yr) for Nyasamba and Bubinza respectively. The study recorded a potential variation of soil carbon sequestration, which varied across depths category (P < 0.05). However, there was no difference across sites (P >0.05) and species (P > 0.05) for herbaceous and trees. The findings of this study portrayed a significantly low value for carbon stocking and sequestration potential for enhanced climate change mitigation. Therefore, proper management of community reserved forest is required to accumulate more C for enhancing stocking potential hence climate change mitigation through CO2 sequestration offsets mechanism.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Ram Asheshwar Mandal ◽  
Pramod Kumar Jha ◽  
Ishwar Chandra Dutta ◽  
Utsab Thapa ◽  
Siddhi Bir Karmacharya

Different plant species have different capacity of carbon sequestration but it is not assessed yet in Nepal. Therefore, this study was done to assess the species-wise carbon sequestration in two periods in forests. Three collaborative and three community forests were selected for the study. The selected forests were surveyed using GPS and mapped and stratified into tree, pole, and regeneration. Specifically 32, 33, and 31 samples were collected from Banke-Maraha, Tuteshwarnath, and Gadhanta-Bardibash collaborative forests, respectively, while 30, 25, and 22 samples were collected from Chureparwati, Buddha, and Chyandanda community forests correspondingly. The sample plots were of 25 m × 20 m for tree strata. The diameter and height of plants were measured and samples were collected for three consecutive years. The estimated carbon stock of Shorea robusta was the highest 35.93 t ha−1 in 2011 which was slightly decreased to 34.43 t ha−1 in 2012 and reached 32.02 t ha−1 in 2013 in Banke-Maraha collaborative forest but it was the least 7.97, 8.92, and 10.29 t ha−1 in 2011, 2012, and 2013, respectively, in Chyandanda community forest. The highest carbon sequestration was recorded about 5.02 t ha−1 of Shorea robusta in Chyandanda community forest in between t2013 and t2012.


2019 ◽  
Vol 7 (1) ◽  
pp. 124-129
Author(s):  
Ratna Silwal Gautam

Carbon sequestration is one of the main ecosystem services in today’s condition. Estimation of above ground tree biomass and carbon stock is important as it gives ecological and economic benefits to the local people. This study was conducted in the Hasantar Community Forest (HCF) of Nagarjun Municipality, Kathmandu. Concentric circular plots of 12.62m radius were established in five different blocks of HCF for the study of tree species. The main objective of this study was to find out the Important Value Index (IVI), Above Ground Tree Biomass (AGTB) and carbon stocks tree species of HCF. This forest comprises the tree species of families like fagacaeae, moraceae, myrtaceae, fabaceae etc in dominant numbers. Schima wallichii was found ecologically most significant tree species as it possess highest IVI value. The carbon stock of this plant was found as   206.865 t/ha which comprises 27 % of total carbon in HCF. The total above ground tree carbon stock of HCF (55.4 ha.) was found 144.795 t/ha. Int. J. Appl. Sci. Biotechnol. Vol 7(1): 124-129


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Ziying He ◽  
Huaye Sun ◽  
Yisheng Peng ◽  
Zhan Hu ◽  
Yingjie Cao ◽  
...  

Abstract Background The fast-growing introduced mangrove Sonneratia apetala is widely used for mangrove afforestation and reforestation in China. Some studies suggested that this exotic species outperforms native species in terms of carbon sequestration potential. This study tested the hypothesis that multi-species mangrove plantations might have higher carbon sequestration potential than S. apetala monocultures. Results Our field measurements at Hanjiang River Estuary (Guangdong province, China) showed that the carbon stock (46.0 ± 3.0 Mg/ha) in S. apetala plantations where the native Kandelia obovata formed an understory shrub layer was slightly higher than that in S. apetala monocultures (36.6 ± 1.3 Mg/ha). Moreover, the carbon stock in monospecific K. obovata stands (106.6 ± 1.4 Mg/ha) was much larger than that of S. apetala monocultures. Conclusions Our results show that K. obovata monocultures may have a higher carbon accumulation rate than S. apetala monocultures. Planting K. obovata seedlings in existing S. apetala plantations may enhance the carbon sink associated with these plantations.


Author(s):  
Felicity Bentsi-Enchill ◽  
Alexander Nii Moi Pappoe ◽  
Bernard Ekumah ◽  
Hugh Komla Akotoye

Carbon sequestration is associated with plant biomass and soils. The amount of carbon sequestration in the Atewa Range Forest Reserve (ARFR) is affected by varied anthropogenic activities like logging, mining and farming. This study estimate the above and below ground carbon stock and assess human-induced stress impacts on the Highly Stressed Vegetation (HSV), Moderately Stressed Vegetation (MSV), and Non-Stressed Vegetation (NSV) in the ARFR. The above ground biomass of trees was determined using the allometric model of (Henry, et al., 2010) whereas plants root biomass was calculated using Cairns et al. (1997). Soil organic carbon was determined using the Walkley&ndash;Black method. We observed that carbon stock was higher in the above-ground than the below-ground component. The MSV, recorded the highest stock of carbon followed by the NSV and the HSV whilst sequestrated carbon stocks was generally high and varied across the three stress levels. Within the forest, the intensity of anthropogenic activities has negatively impacted the amounts of carbon sequestrated at various levels.


ScienceAsia ◽  
2013 ◽  
Vol 39 (5) ◽  
pp. 535 ◽  
Author(s):  
Agapol Junpen ◽  
Savitri Garivait ◽  
Sebastien Bonnet ◽  
Adisak Pongpullponsak

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaodan Sun ◽  
Gang Wang ◽  
Qingxu Ma ◽  
Jiahui Liao ◽  
Dong Wang ◽  
...  

Abstract Background Soil organic carbon (SOC) is important for soil quality and fertility in forest ecosystems. Labile SOC fractions are sensitive to environmental changes, which reflect the impact of short-term internal and external management measures on the soil carbon pool. Organic mulching (OM) alters the soil environment and promotes plant growth. However, little is known about the responses of SOC fractions in rhizosphere or bulk soil to OM in urban forests and its correlation with carbon composition in plants. Methods A one-year field experiment with four treatments (OM at 0, 5, 10, and 20 cm thicknesses) was conducted in a 15-year-old Ligustrum lucidum plantation. Changes in the SOC fractions in the rhizosphere and bulk soil; the carbon content in the plant fine roots, leaves, and organic mulch; and several soil physicochemical properties were measured. The relationships between SOC fractions and the measured variables were analysed. Results The OM treatments had no significant effect on the SOC fractions, except for the dissolved organic carbon (DOC). OM promoted the movement of SOC to deeper soil because of the increased carbon content in fine roots of subsoil. There were significant correlations between DOC and microbial biomass carbon and SOC and easily oxidised organic carbon. The OM had a greater effect on organic carbon fractions in the bulk soil than in the rhizosphere. The thinnest (5 cm) mulching layers showed the most rapid carbon decomposition over time. The time after OM had the greatest effect on the SOC fractions, followed by soil layer. Conclusions The frequent addition of small amounts of organic mulch increased SOC accumulation in the present study. OM is a potential management model to enhance soil organic matter storage for maintaining urban forest productivity.


Sign in / Sign up

Export Citation Format

Share Document