scholarly journals Ten genes are considered as potential biomarkers for the diagnosis of dermatomyositis

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260511
Author(s):  
Lu Xiao ◽  
Wei Xiao ◽  
Shudian Lin

Objective This study aimed to identify the biomarkers and mechanisms for dermatomyositis (DM) progression at the transcriptome level through a combination of microarray and bioinformatic analyses. Method Microarray datasets for skeletal muscle of DM and healthy control (HC) were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were identified by using GEO2R. Enrichment analyses were performed to understand the functions and enriched pathways of DEGs. A protein–protein interaction network was constructed to identify hub genes. The top 10 hub genes were validated by other GEO datasets. The diagnostic accuracy of the top 10 hub genes for DM was evaluated using the area under the curve of the receiver operating characteristic curve. Result A total of 63 DEGs were identified between 10 DM samples and 9 HC samples. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that DEGs are mostly enriched in response to virus, defense response to virus, and type I interferon signaling pathway. 10 hub genes and 3 gene cluster modules were identified by Cytoscape. The identified hub genes were verified by GSE1551 and GSE11971 datasets and proven to be potential biomarkers for the diagnosis of DM. Conclusion Our work identified 10 valuable genes as potential biomarkers for the diagnosis of DM and explored the potential underlying molecular mechanism of the disease.

2020 ◽  
Vol 48 (11) ◽  
pp. 030006052096933
Author(s):  
Yun-peng Bai ◽  
Bo-chen Yao ◽  
Mei Wang ◽  
Xian-kun Liu ◽  
Xiao-long Zhu ◽  
...  

Background Vein graft restenosis (VGR), which appears to be caused by dyslipidemia following vascular transplantation, seriously affects the prognosis and long-term quality of life of patients. Methods This study analyzed the genetic data of restenosis (VGR group) and non-stenosis (control group) vessels from patients with coronary heart disease post-vascular transplantation and identified hub genes that might be responsible for its occurrence. GSE110398 was downloaded from the Gene Expression Omnibus database. A repeatability test for the GSE110398 dataset was performed using R language. This included the identification of differentially expressed genes (DEGs), enrichment analysis via Metascape software, pathway enrichment analysis, and construction of a protein–protein interaction network and a hub gene network. Results Twenty-four DEGs were identified between VGR and control groups. The four most important hub genes ( KIR6.1, PCLP1, EDNRB, and BPI) were identified, and Pearson’s correlation coefficient showed that KIR6.1 and BPI were significantly correlated with VGR. KIR6.1 could also sensitively predict VGR (0.9 < area under the curve ≤1). Conclusion BPI and KIR6.1 were differentially expressed in vessels with and without stenosis after vascular transplantation, suggesting that these genes or their encoded proteins may be involved in the occurrence of VGR.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingni Wu ◽  
Xiaomeng Xia ◽  
Ye Hu ◽  
Xiaoling Fang ◽  
Sandra Orsulic

Endometriosis has been associated with a high risk of infertility. However, the underlying molecular mechanism of infertility in endometriosis remains poorly understood. In our study, we aimed to discover topologically important genes related to infertility in endometriosis, based on the structure network mining. We used microarray data from the Gene Expression Omnibus (GEO) database to construct a weighted gene co-expression network for fertile and infertile women with endometriosis and to identify gene modules highly correlated with clinical features of infertility in endometriosis. Additionally, the protein–protein interaction network analysis was used to identify the potential 20 hub messenger RNAs (mRNAs) while the network topological analysis was used to identify nine candidate long non-coding RNAs (lncRNAs). Functional annotations of clinically significant modules and lncRNAs revealed that hub genes might be involved in infertility in endometriosis by regulating G protein-coupled receptor signaling (GPCR) activity. Gene Set Enrichment Analysis showed that the phospholipase C-activating GPCR signaling pathway is correlated with infertility in patients with endometriosis. Taken together, our analysis has identified 29 hub genes which might lead to infertility in endometriosis through the regulation of the GPCR network.


2021 ◽  
Author(s):  
Mingyi Yang ◽  
Yani Su ◽  
Yao Ma ◽  
Yirixiati Aihaiti ◽  
Peng Xu

Abstract Objective: To study the potential biomarkers and related pathways in osteoarthritis (OA) synovial lesions, and to provide theoretical basis and research directions for the pathogenesis and treatment of OA. Methods: Download the microarray data sets GSE12021 and GSE82107 from Gene Expression Omnibus. GEO2R recognizes differentially expressed genes. Perform functional enrichment analysis of differentially expressed genes and construct protein-protein interaction network. Cytoscape performs module analysis and enrichment analysis of top-level modules. Further identify the Hub gene and perform functional enrichment analysis. TargetScan, miRDB and miRWalk three databases predict the target miRNAs of Hub gene and identify key miRNAs. Results: Finally, 10 Hub genes and 17 key miRNAs related to the progression of OA synovitis were identified. NF1, BTRC and MAPK14 may play a vital role in OA synovial disease. Conclusion: The Hub genes and key miRNAs discovered in this study may be potential biomarkers in the development of OA synovitis, and provide research methods and target basis for the pathogenesis and treatment of OA.


2020 ◽  
Author(s):  
Mehrdad Ameri ◽  
Haniye Salimi ◽  
Sedigheh Eskandari ◽  
Navid Nezafat

Abstract Background: Hepatocellular carcinoma (HCC) is one of the leading causes of death worldwide. Identification of potential therapeutic and diagnostic biomarkers can be helpful to screen cancer progress. This study implemented with the aim of discovering potential biomarkers for HCC within a network-based approach integrated with microarray data. Methods: Through downloading a gene expression profile GSE62232 differentially expressed genes (DEGs) were identified. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for DEGs were performed utilizing enrichr server. Following reconstruction of protein-protein interaction network of DEGs with STRING, network visualization, analyses, and clustering into structural modules carried out using Cytoscape. Considering degree centrality, 15 hub genes were selected as early biomarker candidates for final validation. In order to validate hub genes, GEPIA server was used to perform overall survival (OS) and disease-free survival (DFS). Results: In our approach 1996 DEGs were identified including 995 up-regulated genes and 1001 down-regulated genes. KEGG pathway enrichment analysis shown that DEGs are associated with Chemical carcinogenesis, and Cell cycle. GO term enrichment analysis indicated the relation of DEGs with epoxygenase P450 pathway, arachidonic acid monooxygenase activity, and secretory granule lumen. Following analysis of protein-protein interaction network of DEGs top three structural modules and 15 early hub genes were selected. Validation of hub genes performed using GEPIA. Consequently, CDK1, CCNB1, CCNA2, CDC20, AURKA, MAD2L1, TOP2A, KIF11, BUB1B, TYMS, EZH2, and BUB1 were considered as our final proposed biomarkers. Conclusion: using an integrated network-based approach with microarray data our results revealed 12 final candidates with potential to considered as biomarkers in hepatocellular carcinoma.


2020 ◽  
Author(s):  
Basavaraj Vastrad ◽  
Chanabasayya Vastrad

AbstractThe high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a protein protein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes. The pathways and GO functions of the up and down regulated genes were mainly enriched in pyrimidine deoxyribonucleosides degradation, extracellular structure organization, allopregnanolone biosynthesis and digestion. FN1, PLK1, ANLN, MCM7, MCM2, EEF1A2, PTGER3, CKB, ERBB4 and PRKAA2 were identified as the most important genes of GC, and validated by TCGA database, The Human Protein Atlas database, receiver operating characteristic curve (ROC) analysis and RT-PCR. Bioinformatics analysis might be useful method to explore the molecular pathogensis of GC. In addition, FN1, PLK1, ANLN, MCM7, MCM2, EEF1A2, PTGER3, CKB, ERBB4 and PRKAA2 might be the most important genes of GC.


2019 ◽  
Author(s):  
Yunze Liu ◽  
Xiaojie Sun ◽  
Aijun Qu

As an evolutionarily conserved mechanism, developmental neuronal remodeling is needed for the proper wiring of the nervous system and is critical for understanding the neurodevelopment mechanisms. Previous studies have shown that during metamorphosis lots of Drosophila melanogaster mushroom body neurons experience stereotypic remodeling. However, the related regulators and downstream executors of pathways are yet unclear, especially studies of transcriptional gene co-expression analysis of nervous systems remain insufficient. In this study, we develop a weighted gene co-expression network (WGCNA) to classify gene modules associated with neuronal remodeling. Moreover, functional and pathway enrichment analysis with protein-protein network construction is applied to detect high informative hub genes in the targeted gene module. Thus, we select a total of five hub genes that play critical roles in neuronal remodeling and identify them with functional enrichment analysis and protein-protein interaction network. Overall, this study provides insight into the underlying molecular mechanism of developmental neuronal remodeling in Drosophila melanogaster.


2021 ◽  
Author(s):  
Mohib kakar ◽  
Muhammad Mehboob ◽  
Muhammad Akram ◽  
Imran Iqbal ◽  
Hafza Ijaz ◽  
...  

Abstract Objective The goal of this study was to understand possible core genes associated with hepatocellular carcinoma (HCC) pathogenesis and prognosis. Methods GEO contains datasets of gene expression, miRNA and methylation patterns of diseased and healthy/control patients. GSE62232 Dataset was selected by employing the server Gene Expression Omnibus. A total of 91 samples were collected, including 81 HCC samples and 10 healthy samples as control. GSE62232 was analyzed through GEO2R, and Functional Enrichment Analysis was performed to extract rational information from a set of DEGs. The Protein-Protein Relationship Networking search method has been used for extracting genes interacting. MCC method was used to calculate the top 10 genes according to their importance. Hub genes in the network were analyzed using GEPIA to estimate the effect of their differential expression on cancer progression. Results We identified the top 10 hub genes through Cytohubba plugin. These genes include Cell Cycle Regulatory Cyclins and Cyclin-dependent proteins CCNA2, CCNB1 and CDK1. The pathogenesis and prognosis of HCC may be directly linked with the aforementioned genes. Conclusion In this analysis, we found critical genes for HCC that showed recommendations for more diagnostic and predictive biomarkers studies that could promote selective molecular therapy for HCC.


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Md. Rakibul Islam ◽  
Lway Faisal Abdulrazak ◽  
Mohammad Khursheed Alam ◽  
Bikash Kumar Paul ◽  
Kawsar Ahmed ◽  
...  

Background. Medulloblastoma (MB) is the most occurring brain cancer that mostly happens in childhood age. This cancer starts in the cerebellum part of the brain. This study is designed to screen novel and significant biomarkers, which may perform as potential prognostic biomarkers and therapeutic targets in MB. Methods. A total of 103 MB-related samples from three gene expression profiles of GSE22139, GSE37418, and GSE86574 were downloaded from the Gene Expression Omnibus (GEO). Applying the limma package, all three datasets were analyzed, and 1065 mutual DEGs were identified including 408 overexpressed and 657 underexpressed with the minimum cut-off criteria of ∣ log   fold   change ∣ > 1 and P < 0.05 . The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and WikiPathways enrichment analyses were executed to discover the internal functions of the mutual DEGs. The outcomes of enrichment analysis showed that the common DEGs were significantly connected with MB progression and development. The Search Tool for Retrieval of Interacting Genes (STRING) database was used to construct the interaction network, and the network was displayed using the Cytoscape tool and applying connectivity and stress value methods of cytoHubba plugin 35 hub genes were identified from the whole network. Results. Four key clusters were identified using the PEWCC 1.0 method. Additionally, the survival analysis of hub genes was brought out based on clinical information of 612 MB patients. This bioinformatics analysis may help to define the pathogenesis and originate new treatments for MB.


2020 ◽  
Author(s):  
Le Yu ◽  
Kangyao Yuan ◽  
Jian Zhang ◽  
Jingya Zhao ◽  
Shuchen Pei

Abstract In this study, the bioactive components and predictive targets of Sophorae Flavescentis Radix were investigated by network pharmacology analysis, so as to further elucidate its potential biological mechanism in treating lung cancer. The targets corresponding to lung cancer were obtained by OMIM and Genecards. By intersecting with the targets of Sophorae Flavescentis Radix and lung cancer, the Sophorae Flavescentis Radix-lung cancer targets were obtained. Protein-protein interaction network was constructed by an online database STRING and hub genes were screened by Cytoscape 3.7.0 software. ClusterProfiler package was used to analyze Gene ontology (GO) and KEGG enrichment of the targets in R. A total of 45 bioactive components were screened from Sophorae Flavescentis Radix, corresponding to 482 Sophorae Flavescentis Radix targets and 25019 lung cancer targets. According to the GO and KEGG enrichment analysis, Sophorae Flavescentis Radix played a therapeutic role in treating lung cancer via proteoglycans lung cancer, human cytomegalovirus infection, microRNAs in cancer, PI3K-Akt signaling pathway, etc. Seven hub genes (IL6, CASP3, EGFR, VEGFA, MYC, CCND1 and ESR1) were screened by degree algorithm. In a word, the results of this study may provide novel insights into the mechanisms of Sophorae Flavescentis Radix in treatment of lung cancer.


2021 ◽  
Author(s):  
Mohib kakar ◽  
Muhammad Mehboob ◽  
Muhammad Akram ◽  
Imran Iqbal ◽  
Hafza Ijaz ◽  
...  

Abstract The goal of this study was to understand possible core genes associated with hepatocellular carcinoma (HCC) pathogenesis and prognosis. Gene Expression Omnibus (GEO) contains datasets of gene expression, miRNA and methylation patterns of diseased and healthy/control patients. GSE62232 Dataset was selected by employing the server GEO. A total of 91 samples were collected, including 81 HCC samples and 10 healthy samples as control. GSE62232 was analyzed through GEO2R, and functional enrichment analysis was performed to extract rational information from a set of DEGs. The protein-protein relationship networking search method was used for extracting interacting genes. MCC method was used to calculate the top 10 genes according to their importance. Hub genes in the network were analyzed using GEPIA to estimate the effect of their differential expression on cancer progression. We identified the top 10 hub genes through Cytohubba plugin. These genes include cell cycle regulatory cyclins and cyclin-dependent proteins CCNA2, CCNB1 and CDK1. The pathogenesis and prognosis of HCC may be directly linked with the aforementioned genes. In this analysis, we found critical genes for HCC that showed recommendations for more diagnostic and predictive biomarker studies that could promote selective molecular therapy for HCC.


Sign in / Sign up

Export Citation Format

Share Document