scholarly journals Protective effects of combining monoclonal antibodies and vaccines against the Plasmodium falciparum circumsporozoite protein

2021 ◽  
Vol 17 (12) ◽  
pp. e1010133
Author(s):  
Lawrence T. Wang ◽  
Lais S. Pereira ◽  
Patience K. Kiyuka ◽  
Arne Schön ◽  
Neville K. Kisalu ◽  
...  

Combinations of monoclonal antibodies (mAbs) against different epitopes on the same antigen synergistically neutralize many viruses. However, there are limited studies assessing whether combining human mAbs against distinct regions of the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) enhances in vivo protection against malaria compared to each mAb alone or whether passive transfer of PfCSP mAbs would improve protection following vaccination against PfCSP. Here, we isolated a panel of human mAbs against the subdominant C-terminal domain of PfCSP (C-CSP) from a volunteer immunized with radiation-attenuated Pf sporozoites. These C-CSP-specific mAbs had limited binding to sporozoites in vitro that was increased by combination with neutralizing human “repeat” mAbs against the NPDP/NVDP/NANP tetrapeptides in the central repeat region of PfCSP. Nevertheless, passive transfer of repeat- and C-CSP-specific mAb combinations did not provide enhanced protection against in vivo sporozoite challenge compared to repeat mAbs alone. Furthermore, combining potent repeat-specific mAbs (CIS43, L9, and 317) that respectively target the three tetrapeptides (NPDP/NVDP/NANP) did not provide additional protection against in vivo sporozoite challenge. However, administration of either CIS43, L9, or 317 (but not C-CSP-specific mAbs) to mice that had been immunized with R21, a PfCSP-based virus-like particle vaccine that induces polyclonal antibodies against the repeat region and C-CSP, provided enhanced protection against sporozoite challenge when compared to vaccine or mAbs alone. Collectively, this study shows that while combining mAbs against the repeat and C-terminal regions of PfCSP provide no additional protection in vivo, repeat mAbs do provide increased protection when combined with vaccine-induced polyclonal antibodies. These data should inform the implementation of PfCSP human mAbs alone or following vaccination to prevent malaria infection.

2021 ◽  
Vol 17 (11) ◽  
pp. e1010042
Author(s):  
Yevel Flores-Garcia ◽  
Lawrence T. Wang ◽  
Minah Park ◽  
Beejan Asady ◽  
Azza H. Idris ◽  
...  

Rare and potent monoclonal antibodies (mAbs) against the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) on infective sporozoites (SPZ) preferentially bind the PfCSP junctional tetrapeptide NPDP or NVDP minor repeats while cross-reacting with NANP major repeats in vitro. The extent to which each of these epitopes is required for protection in vivo is unknown. Here, we assessed whether junction-, minor repeat- and major repeat-preferring human mAbs (CIS43, L9 and 317 respectively) bound and protected against in vivo challenge with transgenic P. berghei (Pb) SPZ expressing either PfCSP with the junction and minor repeats knocked out (KO), or PbCSP with the junction and minor repeats knocked in (KI). In vivo protection studies showed that the junction and minor repeats are necessary and sufficient for CIS43 and L9 to neutralize KO and KI SPZ, respectively. In contrast, 317 required major repeats for in vivo protection. These data establish that human mAbs can prevent malaria infection by targeting three different protective epitopes (NPDP, NVDP, NANP) in the PfCSP repeat region. This report will inform vaccine development and the use of mAbs to passively prevent malaria.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Merricka C. Livingstone ◽  
Alexis A. Bitzer ◽  
Alish Giri ◽  
Kun Luo ◽  
Rajeshwer S. Sankhala ◽  
...  

AbstractPlasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.


2020 ◽  
Author(s):  
Rama Raghunandan ◽  
Bryan T Mayer ◽  
Yevel Flores-Garcia ◽  
Monica W Gerber ◽  
Raphael Gottardo ◽  
...  

Abstract Background New strategies are needed to reduce the incidence of malaria, and promising approaches include the development of vaccines and monoclonal antibodies (mAbs) that target the circumsporozoite protein (CSP). To select the best candidates and speed development, it is essential to standardize preclinical assays to measure the potency of such interventions in animal models. Methods Two assay configurations were studied using transgenic Plasmodium berghei expressing Plasmodium falciparum full-length circumsporozoite protein. The assays measured 1) reduction in parasite infection of the liver (liver burden) following an intravenous (i.v) administration of sporozoites and 2) protection from parasitaemia following mosquito bite challenge. Two human CSP mAbs, AB311 and AB317, were compared for their ability to inhibit infection. Multiple independent experiments were conducted to define assay variability and resultant impact on the ability to discriminate differences in mAb functional activity. Results Overall, the assays produced highly consistent results in that all individual experiments showed greater functional activity for AB317 compared to AB311 as calculated by the dose required for 50% inhibition (ID50) as well as the serum concentration required for 50% inhibition (IC50). The data were then used to model experimental designs with adequate statistical power to rigorously screen, compare, and rank order novel anti-CSP mAbs. Conclusion The results indicate that in vivo assays described here can provide reliable information for comparing the functional activity of mAbs. The results also provide guidance regarding selection of the appropriate experimental design, dose selection, and group sizes.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Rama Raghunandan ◽  
Bryan T. Mayer ◽  
Yevel Flores-Garcia ◽  
Monica W. Gerber ◽  
Raphael Gottardo ◽  
...  

2020 ◽  
Vol 3 (2) ◽  
pp. 63-70 ◽  
Author(s):  
Rongqing Zhao ◽  
Qian Xiao ◽  
Maohua Li ◽  
Wenlin Ren ◽  
Chenxi Xia ◽  
...  

Abstract Dickkopf-related protein 2 (DKK2)is a member of the Dickkopf family in Wnt signaling pathway. Recently, we found that antibodies against DKK2 could activate natural killer (NK) and CD8+ T cells in tumors and inhibit tumor growth. In this paper, we report the rational design of peptides for identification of linear epitopes and generation of neutralizing monoclonal anti-DKK2 antibodies. To break the immune tolerance, we designed and chemically synthesized six peptides corresponding to different regions of DKK2 as immunogens and found five of them could generate mouse polyclonal antibodies that can bind to the active recombinant human DKK2 protein. Neutralizing mouse monoclonal antibodies (5F8 and 1A10) against human DKK2 were successfully developed by immunizing the mice with two different peptides (34KLNSIKSSL42 and 240KVWKDATYS248) conjugated to Keyhole limpet hemocyanin (KLH). The monoclonal antibodies not only abolish DKK2’s suppression of Wnt signaling in vitro but also inhibits tumor growth in vivo. Currently, those two mAbs are undergoing humanization as immunotherapy candidates and may offer a new drug for treatment of human cancers.


2019 ◽  
Vol 295 (2) ◽  
pp. 403-414 ◽  
Author(s):  
Susheel K. Singh ◽  
Jordan Plieskatt ◽  
Bishwanath Kumar Chourasia ◽  
Vandana Singh ◽  
Judith M. Bolscher ◽  
...  

The Plasmodium falciparum circumsporozoite protein (PfCSP) is a sporozoite surface protein whose role in sporozoite motility and cell invasion has made it the leading candidate for a pre-erythrocytic malaria vaccine. However, production of high yields of soluble recombinant PfCSP, including its extensive NANP and NVDP repeats, has proven problematic. Here, we report on the development and characterization of a secreted, soluble, and stable full-length PfCSP (containing 4 NVDP and 38 NANP repeats) produced in the Lactococcus lactis expression system. The recombinant full-length PfCSP, denoted PfCSP4/38, was produced initially with a histidine tag and purified by a simple two-step procedure. Importantly, the recombinant PfCSP4/38 retained a conformational epitope for antibodies as confirmed by both in vivo and in vitro characterizations. We characterized this complex protein by HPLC, light scattering, MS analysis, differential scanning fluorimetry, CD, SDS-PAGE, and immunoblotting with conformation-dependent and -independent mAbs, which confirmed it to be both pure and soluble. Moreover, we found that the recombinant protein is stable at both frozen and elevated-temperature storage conditions. When we used L. lactis–derived PfCSP4/38 to immunize mice, it elicited high levels of functional antibodies that had the capacity to modify sporozoite motility in vitro. We concluded that the reported yield, purity, results of biophysical analyses, and stability of PfCSP4/38 warrant further consideration of using the L. lactis system for the production of circumsporozoite proteins for preclinical and clinical applications in malaria vaccine development.


2003 ◽  
Vol 71 (8) ◽  
pp. 4320-4325 ◽  
Author(s):  
Chandy C. John ◽  
Joseph S. Zickafoose ◽  
P. Odada Sumba ◽  
Christopher L. King ◽  
James W. Kazura

ABSTRACT Immunoglobulin G (IgG) antibodies to three vaccine candidate preerythrocytic Plasmodium falciparum antigens were evaluated in children and adults in an epidemic-prone highland area of Kenya during rainy (high-transmission) and dry (low-transmission) seasons. The frequencies and median levels of IgG antibodies to circumsporozoite protein (CSP) and thrombospondin-related adhesive protein (TRAP) were compared to the frequencies and median levels of IgG antibodies to liver-stage antigen 1 (LSA-1) reported previously. The frequencies and median levels of IgG antibodies to CSP and TRAP were similar in children and adults in the rainy season, but they were lower in children than in adults in the dry season. The frequencies and median levels of antibodies to LSA-1 were lower in children than in adults in both the rainy and dry seasons. Antibodies to CSP and LSA-1 were primarily members of the IgG1 and IgG3 subclasses, while antibodies to TRAP were primarily members of the IgG3 and IgG4 subclasses. In a treatment-reinfection study following dry season testing, antibodies to TRAP were associated with a trend toward protection from infection in children (P = 0.051) but not in adults. Antibodies to LSA-1 and CSP did not correlate with protection in children or adults. In this highland area of Kenya with unstable transmission, IgG antibodies to preerythrocytic P. falciparum antigens vary in subjects by age and season, and the protective effects of these antibodies against infection may be different in adults and children.


Antibodies ◽  
2017 ◽  
Vol 6 (3) ◽  
pp. 11 ◽  
Author(s):  
Min Zhang ◽  
Rajakumar Mandraju ◽  
Urvashi Rai ◽  
Takayuki Shiratsuchi ◽  
Moriya Tsuji

2020 ◽  
Author(s):  
Richelle C. Charles ◽  
Meagan Kelly ◽  
Jenny M. Tam ◽  
Aklima Akter ◽  
Motaher Hossain ◽  
...  

ABSTRACTThe mechanism of protection against cholera afforded by previous illness or vaccination is currently unknown. We have recently shown that antibodies targeting O-specific polysaccharide (OSP) of Vibrio cholerae correlate highly with protection against cholera. V. cholerae is highly motile and possesses a flagellum sheathed in O-specific polysaccharide (OSP), and motility of V. cholerae correlates with virulence. Using high speed video microscopy, and building upon previous animal-related work, we demonstrate that sera, polyclonal antibody fractions, and OSP-specific monoclonal antibodies recovered from humans surviving cholera block V. cholerae motility at both subagglutinating and agglutinating concentrations. This anti-motility effect is reversed by pre-adsorbing sera and polyclonal antibody fractions with purified OSP; and is associated with OSP-specific but not flagellin-specific monoclonal antibodies. F[ab] fragments of OSP-specific polyclonal antibodies do not inhibit motility, suggesting a requirement for antibody-mediated crosslinking in motility inhibition. We show that OSP-specific antibodies do not directly affect V. cholerae viability, but that OSP-specific monoclonal antibody highly protects against death in the murine cholera model. We used in vivo competitive index studies to demonstrate that OSP-specific antibodies impede colonization and survival of V. cholerae in intestinal tissues, and that this impact is motility-dependent. Our findings suggest that the impedance of motility by antibodies targeting V. cholerae OSP contributes to protection against cholera.IMPORTANCECholera is a severe dehydrating illness of humans caused by Vibrio cholerae. V. cholerae is a highly motile bacterium that has a single flagellum covered in lipopolysaccharide (LPS) displaying O-specific polysaccharide (OSP), and V. cholerae motility correlates with its ability to cause disease. The mechanisms of protection against cholera are not well understood; however, since V. cholerae is a non-invasive intestinal pathogen, it is likely that antibodies that bind the pathogen or its products in the intestinal lumen contribute to protection from infection. Here, we demonstrate that OSP-specific antibodies isolated from humans surviving cholera in Bangladesh inhibit V. cholerae motility and are associated with protection against challenge in a motility-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document