scholarly journals Feasibility of Immunosuppressant Drug Monitoring by a Microsampling Device

2019 ◽  
Vol 4 (2) ◽  
pp. 241-246
Author(s):  
Valentinas Gruzdys ◽  
Stephen D Merrigan ◽  
Kamisha L Johnson-Davis

Abstract Background Therapeutic drug monitoring (TDM) for immunosuppressive (ISP) drugs is an important component of organ and tissue transplantation and chemotherapy management. Whole blood is the specimen type for the quantitative analysis of cyclosporine A, everolimus, sirolimus, and tacrolimus. Some alternatives to venous whole blood samples have the potential to reduce blood volume requirements and simplify sample collection and transport. Methods The feasibility of ISP drug (cyclosporine A, everolimus, sirolimus, and tacrolimus) monitoring via microsampling device (MitraTM, Neoteryx) was assessed by comparing venous samples collected and extracted using microsampling device to conventional extraction procedure. Analysis was performed by LC-MS/MS. Results All analytes were found to be linear across the measurement range of 22.7–937.0 ng/mL (18.9–779.1 nmol/L) for cyclosporine A, 2.3–44.2 ng/mL (2.4–46.1 nmol/L) for everolimus, 2.2–47.2 ng/mL (2.4–51.6 nmol/L) for sirolimus, and 2.2–41.3 ng/mL (2.7–51.4 nmol/L) for tacrolimus. Imprecision was evaluated at concentrations within the therapeutic range and was found to be 10.1% and 5.8% for cyclosporine A, 10.0% and 10.0% for everolimus, 15.0% and 11.9% for sirolimus, and 6.8% and 8.5% for tacrolimus. Method comparison (n = 30 for each analyte, using Deming regression) indicated slopes of 1.08, 1.02, 0.90, and 1.15 and intercepts of −12.8 ng/mL (−10.7 nmol/L), 0.8 ng/mL (0.8 nmol/L), 1.5 ng/mL (1.7 nmol/L), and −0.3 ng/mL (−0.3 nmol/L) for cyclosporine A, everolimus, sirolimus, and tacrolimus, respectively. Conclusions This feasibility study demonstrates that precision and bias of ≤15% can be achieved for microsampling-based ISP monitoring.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1832
Author(s):  
Angela W.S. Fung ◽  
Michael J. Knauer ◽  
Ivan M. Blasutig ◽  
David A. Colantonio ◽  
Vathany Kulasingam

Background:  Therapeutic drug monitoring of immunosuppressant drugs are used to monitor drug efficacy and toxicity and to prevent organ transplant rejection. This study evaluates the analytical performance of semi-automated electrochemiluminescence immunoassays (ECLIA) for cyclosporine (CSA), tacrolimus (TAC) and sirolimus (SRL) on the Roche cobas e 411 analyzer at a major transplant hospital to assess method suitability and limitations. Methods: Residual whole blood samples from patients undergoing immunosuppressant therapy were used for evaluation. Imprecision, linearity, functional sensitivity, method comparisons and lot-to-lot comparisons were assessed. Results: Total imprecision ranged from 3.3 to 7.1% for CSA, 3.9 to 9.4% for TAC, and 4.6 to 8.2% for SRL. Linearity was verified from 30.0 to 960.9 μg/L for CSA, from 1.1 to 27.1 μg/L for TAC, and from 0.5 to 32.3 µg/L for SRL. The functional sensitivity met the manufacturer’s claims and was determined to be <6.5 μg/L for CSA, 1.1 μg/L for TAC, and <0.1 µg/L for SRL (CV≤20%). Deming regression analysis of method comparisons with the ARCHITECT immunoassay yielded slopes of 0.917 (95%CI: 0.885-0.949) and r of 0.985 for CSA, 0.938 (95%CI: 0.895-0.981) and r of 0.974 for TAC, and 0.842 (0.810-1.110) and r of 0.982 for SRL. Deming regression analysis of comparisons with the LC–MS/MS method yielded slopes of 1.331 (95%CI: 1.167-1.496) and r of 0.969 for CSA, 0.924 (95%CI: 0.843-1.005) and r of 0.984 for TAC, and 0.971 (95%CI: 0.913-1.030) and r of 0.993 for SRL. Conclusions: The cobas e 411 ECLIA for CSA, TAC, and SRL have acceptable precision, linearity, and functional sensitivity. The method comparisons correlated well with the ARCHITECT immunoassay and LC–MS/MS and is fit for therapeutic drug monitoring


1996 ◽  
Vol 42 (12) ◽  
pp. 1943-1948 ◽  
Author(s):  
K L Napoli ◽  
B D Kahan

Abstract During phase I/II clinical trials of sirolimus (rapamycin; SRL), therapeutic drug monitoring was performed with a multistep liquid-liquid extraction of 1-mL aliquots of whole blood followed by reversed-phase HPLC with ultraviolet detection. Blood was sampled according to a standardized protocol and clinical status. SRL concentrations were interpolated from calibration curves with a linear range of 0-50 micrograms/L and 1 microgram/L lower limit of quantification. Quality control was monitored over 68 consecutive analytical runs by using frozen aliquots of SRL-supplemented pooled whole blood at 4, 12, and 32 micrograms/L. These samples showed mean concentrations of 3.7 +/- 0.6, 10.9 +/- 1.1, and 29.6 +/- 2.6 micrograms/L, respectively. This method for therapeutic drug monitoring of SRL permits one full-time technician to analyze 100 clinical specimens per week with a 24-h turnaround time. With this method, a strong linear relation (r2 = 0.946, Sy/x = 0.41, n = 115) between the average SRL concentration over a 24-h period and the SRL concentration at the 24th h was revealed.


1994 ◽  
Vol 40 (12) ◽  
pp. 2247-2253 ◽  
Author(s):  
M Winkler ◽  
B Ringe ◽  
J Baumann ◽  
M Loss ◽  
K Wonigeit ◽  
...  

Abstract By retrospective analysis of 13,000 blood samples obtained from 248 patients receiving FK 506 therapy, we compared the suitability of plasma with that of whole blood as the matrix for therapeutic drug monitoring of FK 506. The plasma concentrations did not correlate with the concentrations in whole blood (r = 0.56). In contrast to plasma samples (analyzed by enzyme immunoassay), FK 506 was detectable in all whole-blood samples (analyzed by enzyme immunoassay/microparticle enzyme immunoassay). The inter- and intraindividual variations of FK 506 measurements were greater in plasma than in whole blood. Moreover, plasma concentrations correlated only poorly with clinical events. There was a tendency to greater plasma concentrations being measured during episodes of toxicity, but no clear difference was evident between stable course and rejection. In whole-blood specimens, a correlation between reduced or increased FK 506 concentrations and rejection or toxicity, respectively, was observed. The discriminatory power of whole-blood values was greater for the differentiation between toxicity and stable course than between rejection and stable course. We therefore recommend whole blood rather than plasma as the matrix for therapeutic monitoring of FK 506 concentrations.


2020 ◽  
Author(s):  
Edgar Ong ◽  
Ruo Huang ◽  
Richard Kirkland ◽  
Stefan Westin ◽  
Jared Salbato ◽  
...  

<p>Two fast (<5 min), time-resolved fluorescence resonance energy transfer (FRET)-based immunoassays (Procise IFX™ and Procise ADL™) were developed for the quantitative detection of infliximab (IFX), adalimumab (ADL), and their respective biosimilars for use in therapeutic drug monitoring (TDM) using 20 µL of finger prick whole blood at the point-of-care or whole blood/serum in a central lab. Studies were performed to characterize analytical performance of the Procise IFX and the Procise ADL assays on the ProciseDx™ analyzer.</p> <p><br></p><p>The Procise IFX and Procise ADL assays both showed good analytical performance with respect to sensitivity, specificity, linearity, and precision suitable for routine clinical use as well as excellent correlation to current commercial ELISA IFX and ADL measurement methods.</p> <p><br></p><p>Results indicated that the Procise IFX and Procise ADL assays are sensitive, specific, and precise yielding results in less than 5 minutes from either whole blood or serum. This indicates the Procise IFX and Procise ADL assays are useful for obtaining fast and accurate IFX or ADL quantitation, thus avoiding delays inherent to current methods and enabling immediate drug level dosing decisions to be made during a single patient visit.</p>


2021 ◽  
Vol 45 (3) ◽  
pp. 183-187
Author(s):  
Dao-Hai Cheng ◽  
Zhen-Guang Huang ◽  
Jing-Bing Zhu

Abstract Objectives Heat treatment is a convenient measure for pathogens inactivation. The authors investigated the effects of this method on blood concentrations of six commonly therapeutic drugs. Methods Plasma and whole blood were pretreated with or without heating at 56 °C for 30 min, and drug concentrations of vancomycin, methotrexate, valproic acid, digoxin, carbamazepine, and cyclosporine were examined. Results Increased valproic acid levels after plasma heating (63.2 ± 30.2 vs. 62.1 ± 29.8 mg/L, mean recovery 102.0%) and whole blood heating (64.5 ± 30.5 vs. 62.1 ± 29.8 mg/L, mean recovery 104.6%) were observed (both p<0.05), but these differences were not considered clinically important. Recoveries of vancomycin in heat treatments varied widely, with an average and significant decrease of 15.8% in value after whole blood heating (11.7 ± 8.1 vs. 13.7 ± 8.6 mg/L, p<0.05). Conclusions Plasma or whole blood heating at 56 °C for 30 min are feasible in pathogens inactivation during monitoring methotrexate, valproic acid, digoxin, carbamazepine, and cyclosporine. However, such pretreatment seems inappropriate in monitoring vancomycin concentrations. Those results highlight the need for caution when applying heat treatment for pathogens inactivation in therapeutic drug monitoring.


2020 ◽  
Vol 5 (3) ◽  
pp. 516-530
Author(s):  
Michael M Mbughuni ◽  
Maria A Stevens ◽  
Loralie J Langman ◽  
Yogish C Kudva ◽  
William Sanchez ◽  
...  

Abstract Background Immunosuppressant therapeutic drug monitoring (TDM) usually requires outpatient travel to hospitals or phlebotomy sites for venous blood collection; however Mitra® Microsampling Device (MSD) sampling could allow self-collection and shipping of samples to a laboratory for analysis. This study examined the feasibility of using volumetric microsampling by MSD for TDM of tacrolimus (TaC) and cyclosporin A (CsA) in transplant patients, along with their feedback on the process. Methods MSD was used to collect TaC and CsA from venous (VB) or capillary (CB) blood. The MSDs were rehydrated, extracted, and analyzed using on-line solid phase extraction coupled to tandem mass spectrometry (SPE-MS/MS). We report an abbreviated method validation of the MSD including: accuracy, precision, linearity, carry-over, and stability using residual venous whole blood (VB) samples. Subsequent clinical validation compared serially collected MSD + CB against VB (200 µL) from transplant patients. Results Accuracy comparing VB vs. MSD+VB showed high clinical concordance (TaC = 89% and CsA = 98%). Inter- and intra-precision was ≤11.5 %CV for TaC and CsA. Samples were stable for up to 7 days at room temperature with an average difference of &lt;10%. Clinical validation with MSD+CB correlated well with VB for CsA (slope = 0.95, r2 = 0.88, n = 47) and TaC (slope = 0.98, r2 = 0.82, n = 49). CB vs. VB gave concordance of 94% for CsA and 79% for TaC. A satisfaction survey showed 82% of patients preferred having the capillary collection option. Conclusion Transplant patients favored having the ability to collect capillary samples at home for TaC/CsA monitoring. Our results demonstrate good concordance between MSD+CB and VB for TaC and CsA TDM, but additional studies are warranted.


Sign in / Sign up

Export Citation Format

Share Document