scholarly journals Spatial pattern dynamics of Cyclobalanopsis myrsinifolia in mixed broad-leaved forests on Tianmu Mountain, eastern China, 1996–2012

Silva Fennica ◽  
2022 ◽  
Vol 56 (1) ◽  
Author(s):  
Shaoqin Yang ◽  
Lita Yi ◽  
Nuonan Ye ◽  
Mengyuan Wu ◽  
Meihua Liu

Studies of the spatial patterns of dominant plant species may provide significant insights into processes and mechanisms that maintain stand stability. This study was performed in a permanent 1 ha plot in evergreen and deciduous broad-leaved mixed forests on Tianmu Mountain. Based on two surveys (1996 and 2012), the dynamics of the spatial distribution pattern of the dominant population ( (Blume) Oersted) and the intra- and interspecific relationships between and other dominant species populations were analyzed using Ripley’s () function. We identified the importance value of a species in a community, which is the sum of the relative density, relative frequency, and relative dominance. The drivers of spatial distribution variation and the maintenance mechanisms of the forest were discussed. The results showed that the importance value of within the community decreased over the past 16 years. The population exhibited a significantly aggregated distribution within a spatial scale of 0–25 m in 1996 whereas it changed to a random distribution at scales larger than 5.5 m in 2012. From 1996 to 2012, the spatial distribution patterns between and (Batal.) Iljinsk. and between and (Lamb.) Hook did not change significantly. In 1996, and Miq. were positively associated at the scale of 0–25 m; this relationship was strongly significant at the scale of 6–10 m. However, there was no association between the populations of two species in terms of the spatial distribution at the scale of 0–25 m in 2012. Our findings indicate that the drivers of variation in the spatial distribution of the population were intra- and interspecific mutual relationships as well the seed-spreading mechanism of this species.Cyclobalanopsis myrsinifoliaC. myrsinifoliaKrC. myrsinifoliaC. myrsinifoliaC. myrsinifoliaCyclocarya paliurusC. myrsinifoliaCunninghamia lanceolataC. myrsinifoliaDaphniphyllum macropodumC. myrsinifolia

Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 152 ◽  
Author(s):  
Lingyu Zhang ◽  
Lingbo Dong ◽  
Qiang Liu ◽  
Zhaogang Liu

Seedling and sapling spatial patterns are important in community regeneration, and understanding the natural regeneration mechanisms of tree species in relation to spatial patterns will help improve forest management and community restoration efficiency. Based on data from three fixed plots established in birch forests (BF), coniferous and broadleaved mixed forests (CBMF) and coniferous mixed forests (CMF) in the central Greater Khingan Mountains in Heilongjiang Province, China, in 2017, we used the univariate and bivariate O-ring functions of the point pattern analysis method to evaluate the spatial patterns and associations of the main tree species in these three forest types at different development stages and identified the community successional stages according to the interspecific associations between dominant tree species and other tree species. The results showed that Betula platyphylla and Larix gmelinii in BF exhibited identical spatial distribution patterns and had a tendency to transition from an aggregated to a random distribution from saplings to adult trees, whereas every tree type in CBMF generally showed a random distribution. Adult trees of the main tree species in CMF, i.e., L. gmelinii and Picea koraiensis, mainly showed a random distribution, but P. koraiensis at other size classes generally showed an aggregated distribution. The intraspecific associations of the main tree species in BF and CMF at different development stages were constrained by the spatial scale within a given scope, while those in CBMF at different development stages were not significantly constrained by spatial scale. The results also show that the density of the three forest types was affected by the distance between the individuals of the various tree classes and adult trees, with different levels of influence. We analyzed the interspecific associations between dominant tree species and other tree species and then assessed community succession progress and found that the BF and CMF exhibited medium-term community succession, while the CBMF was in the primary stage. Our results further show that the spatial distribution patterns of the tree species in the small-diameter classes were jointly affected by adjacent habitats and diffusional limitations and that scale dependence existed in the intraspecific and interspecific associations. The analysis of the natural regeneration of spatial distribution and interspecific associations represents an efficient way to explore the stability of forest communities and dynamic changes in interspecific relationships during succession. The study results thus provide a theoretical basis for developing rational forest management measures.


1998 ◽  
Vol 38 (7) ◽  
pp. 73-79 ◽  
Author(s):  
Hooi-Ling Lee ◽  
Donald DeAngelis ◽  
Hock-Lye Koh

This paper discusses the spatial distribution patterns of the various species of the Unionid mussels as functions of their respective life-cycle characteristics. Computer simulations identify two life-cycle characteristics as major factors governing the abundance of a species, namely the movement range of their fish hosts and the success rate of the parasitic larval glochidia in finding fish hosts. Core mussels species have fish hosts with large movement range to disperse the parasitic larval glochidia to achieve high levels of abundance. Species associated with fish host of limited movement range require high success rate of finding fish host to achieve at least an intermediate level of abundance. Species with low success rate of finding fish hosts coupled with fish hosts having limited movement range exhibit satellite species characteristics, namely rare in numbers and sparse in distributions.


2021 ◽  
Vol 13 (13) ◽  
pp. 2570
Author(s):  
Teng Li ◽  
Bozhong Zhu ◽  
Fei Cao ◽  
Hao Sun ◽  
Xianqiang He ◽  
...  

Based on characteristics analysis about remote sensing reflectance, the Secchi Disk Depth (SDD) in the Qiandao Lake was predicted from the Landsat8/OLI data, and its changing rates on a pixel-by-pixel scale were obtained from satellite remote sensing for the first time. Using 114 matchups data pairs during 2013–2019, the SDD satellite algorithms suitable for the Qiandao Lake were obtained through both the linear regression and machine learning (Support Vector Machine) methods, with remote sensing reflectance (Rrs) at different OLI bands and the ratio of Rrs (Band3) to Rrs (Band2) as model input parameters. Compared with field observations, the mean absolute relative difference and root mean squared error of satellite-derived SDD were within 20% and 1.3 m, respectively. Satellite-derived results revealed that SDD in the Qiandao Lake was high in boreal spring and winter, and reached the lowest in boreal summer, with the annual mean value of about 5 m. Spatially, high SDD was mainly concentrated in the southeast lake area (up to 13 m) close to the dam. The edge and runoff area of the lake were less transparent, with an SDD of less than 4 m. In the past decade (2013–2020), 5.32% of Qiandao Lake witnessed significant (p < 0.05) transparency change: 4.42% raised with a rate of about 0.11 m/year and 0.9% varied with a rate of about −0.09 m/year. Besides, the findings presented here suggested that heavy rainfall would have a continuous impact on the Qiandao Lake SDD. Our research could promote the applications of land observation satellites (such as the Landsat series) in water environment monitoring in inland reservoirs.


1990 ◽  
Vol 5 ◽  
pp. 13-30 ◽  
Author(s):  
D. A. Springer ◽  
A. I. Miller

The way we view species distribution patterns, particularly at the level commonly referred to as the “community”, has changed over the past 70 years in biology and, subsequently, in paleontology. Because the degree to which species associations can be interpreted as ecological and evolutionary units depends ultimately on recognition and interpretation of faunal spatial variability, we need to understand the nature of this variability at all levels of resolution before we can adequately address questions of “community” structure and dynamics. While it is possible to recognize spatial variability at several levels, from the distributions of individuals within a species to the overall pattern created by the global biota, we must ask whether these patterns really comprise a hierarchy with natural discontinuities (Fig. 1), or whether it is more realistic to view them as a continuous variability spectrum.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian-Yu Li ◽  
Yan-Ting Chen ◽  
Meng-Zhu Shi ◽  
Jian-Wei Li ◽  
Rui-Bin Xu ◽  
...  

AbstractA detailed knowledge on the spatial distribution of pests is crucial for predicting population outbreaks or developing control strategies and sustainable management plans. The diamondback moth, Plutella xylostella, is one of the most destructive pests of cruciferous crops worldwide. Despite the abundant research on the species’s ecology, little is known about the spatio-temporal pattern of P. xylostella in an agricultural landscape. Therefore, in this study, the spatial distribution of P. xylostella was characterized to assess the effect of landscape elements in a fine-scale agricultural landscape by geostatistical analysis. The P. xylostella adults captured by pheromone-baited traps showed a seasonal pattern of population fluctuation from October 2015 to September 2017, with a marked peak in spring, suggesting that mild temperatures, 15–25 °C, are favorable for P. xylostella. Geostatistics (GS) correlograms fitted with spherical and Gaussian models showed an aggregated distribution in 21 of the 47 cases interpolation contour maps. This result highlighted that spatial distribution of P. xylostella was not limited to the Brassica vegetable field, but presence was the highest there. Nevertheless, population aggregations also showed a seasonal variation associated with the growing stage of host plants. GS model analysis showed higher abundances in cruciferous fields than in any other patches of the landscape, indicating a strong host plant dependency. We demonstrate that Brassica vegetables distribution and growth stage, have dominant impacts on the spatial distribution of P. xylostella in a fine-scale landscape. This work clarified the spatio-temporal dynamic and distribution patterns of P. xylostella in an agricultural landscape, and the distribution model developed by geostatistical analysis can provide a scientific basis for precise targeting and localized control of P. xylostella.


2021 ◽  
Vol 13 (1) ◽  
pp. 1-16
Author(s):  
Michela Fazzolari ◽  
Francesco Buccafurri ◽  
Gianluca Lax ◽  
Marinella Petrocchi

Over the past few years, online reviews have become very important, since they can influence the purchase decision of consumers and the reputation of businesses. Therefore, the practice of writing fake reviews can have severe consequences on customers and service providers. Various approaches have been proposed for detecting opinion spam in online reviews, especially based on supervised classifiers. In this contribution, we start from a set of effective features used for classifying opinion spam and we re-engineered them by considering the Cumulative Relative Frequency Distribution of each feature. By an experimental evaluation carried out on real data from Yelp.com, we show that the use of the distributional features is able to improve the performances of classifiers.


2019 ◽  
Author(s):  
Xuexi Tie ◽  
Xin Long ◽  
Guohui Li ◽  
Shuyu Zhao ◽  
Jianming Xu

Abstract. PM2.5, a particulate matter with a diameter of 2.5 micrometers or less, is one of the major components of the air pollution in eastern China. In the past few years, China's government made strong efforts to reduce the PM2.5 pollutions. However, another important pollutant (ozone) becomes an important problem in eastern China. Ozone (O3) is produced by photochemistry, which requires solar radiation for the formation of O3. Under heavy PM2.5 pollution, the solar radiation is often depressed, and the photochemical production of O3 is prohibited. This study shows that during fall in eastern China, under heavy PM2.5 pollutions, there were often strong O3 photochemical productions, causing a co-occurrence of high PM2.5 and O3 concentrations. This co-occurrence of high PM2.5 and O3 is un-usual and is the main focus of this study. Recent measurements show that there were often high HONO surface concentrations in major Chinese mega cities, especially during daytime, with maximum concentrations ranging from 0.5 to 2 ppbv. It is also interesting to note that the high HONO concentrations were occurred during high aerosol concentration periods, suggesting that there were additional HONO surface sources in eastern China. Under the high daytime HONO concentrations, HONO can be photo-dissociated to be OH radicals, which enhance the photochemical production of O3. In order to study the above scientific issues, a radiative transfer model (TUV; Tropospheric Ultraviolet-Visible) is used in this study, and a chemical steady state model is established to calculate OH radical concentrations. The calculations show that by including the OH production of the photo-dissociated of HONO, the calculated OH concentrations are significantly higher than the values without including this production. For example, by including HONO production, the maximum of OH concentration under the high aerosol condition (AOD = 2.5) is similar to the value under low aerosol condition (AOD = 0.25) in the no-HONO case. This result suggests that even under the high aerosol condition, the chemical oxidizing process for O3 production can occurred, which explain the co-occurrence of high PM2.5 and high O3 in fall season in eastern China. However, the O3 concentrations were not significantly affected by the appearance of HONO in winter. This study shows that the seasonal variation of solar radiation plays important roles for controlling the OH production in winter. When the solar radiation is in a very low level in winter, it reaches the threshold level to prevent the OH chemical production, even by including the HONO production of OH. This study provides some important scientific highlights to better understand the O3 pollutions in eastern China.


Sign in / Sign up

Export Citation Format

Share Document