scholarly journals Identification of Multi-Faults in GNSS Signals using RSIVIA under Dual Constellation

2021 ◽  
Author(s):  
Shuchen Liu ◽  
Jan-Jöran Gehrt ◽  
Dirk Abel ◽  
René Zweigel

This publication presents the development of integrity monitoring and fault detection and exclusion (FDE) of pseudorange measurements, which are used to aid a tightly-coupled navigation filter. This filter is based on an inertial measurement unit (IMU) and is aided by signals of global navigation satellite system (GNSS). Particularly, the GNSS signals include global positioning system (GPS) and Galileo. By using GNSS signals, navigation systems suffer from signal interferences resulting in large pseudorange errors. Further, a higher number of satellites with dual-constellation increases the possibility that satellite observations contain multiple faults. In order to ensure integrity and accuracy of the filter solution, it is crucial to provide sufficient fault-free GNSS measurements for the navigation filter. For this purpose, a new hybrid strategy is applied, combining conventional receiver autonomous integrity monitoring (RAIM) and innovative robust set inversion via interval analysis (RSIVIA). To further improve the performance, as well as the computational efficiency of the algorithm, the estimated velocity and its variance from the navigation filter is used to reduce the size of the RSIVIA initial box.  The designed approach is evaluated with recorded data from an extensive real-world measurement campaign, which has been carried out in GATE Berchtesgaden, Germany. In GATE, up to six Galileo satellites in orbit can be simulated. Further, the signals of simulated Galileo satellites can be manipulated to provide faulty GNSS measurements, such that the fault detection and identification (FDI) capability can be validated. The results show that the designed approach is able to identify the generated faulty GNSS observables correctly and improve the accuracy of the navigation solution. Compared with traditional RSIVIA, the designed new approach provides a more timely fault identification and is more computational efficient.

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2922
Author(s):  
Fan Zhang ◽  
Ye Wang ◽  
Yanbin Gao

Fault detection and identification are vital for guaranteeing the precision and reliability of tightly coupled inertial navigation system (INS)/global navigation satellite system (GNSS)-integrated navigation systems. A variance shift outlier model (VSOM) was employed to detect faults in the raw pseudo-range data in this paper. The measurements were partially excluded or included in the estimation process depending on the size of the associated shift in the variance. As an objective measure, likelihood ratio and score test statistics were used to determine whether the measurements inflated variance and were deemed to be faulty. The VSOM is appealing because the down-weighting of faulty measurements with the proper weighting factors in the analysis automatically becomes part of the estimation procedure instead of deletion. A parametric bootstrap procedure for significance assessment and multiple testing to identify faults in the VSOM is proposed. The results show that VSOM was validated through field tests, and it works well when single or multiple faults exist in GNSS measurements.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4912 ◽  
Author(s):  
Wei Liu ◽  
Dan Song ◽  
Zhipeng Wang ◽  
Kun Fang

Considering the inertial measurement unit (IMU) faults risk of an unmanned aerial vehicle (UAV), this paper provides an analysis of the error overboundings of position estimation in a tightly coupled IMU/global navigation satellite system (GNSS) integrated architecture under the IMU fault conditions using an error-state EKF-based approach and provides a comparison to a recently published EKF-based full state method. Simulation results show that both the error overboundings of the error-state and full-state EKFs can fit the state error against the IMU faults, but the error-state EKF is more suitable for UAV navigation system integrity assurance due to its higher calculation effciency. This study will be extended to the integrity monitoring of multisensor systems.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 590 ◽  
Author(s):  
Shizhuang Wang ◽  
Xingqun Zhan ◽  
Yawei Zhai ◽  
Baoyu Liu

To ensure navigation integrity for safety-critical applications, this paper proposes an efficient Fault Detection and Exclusion (FDE) scheme for tightly coupled navigation system of Global Navigation Satellite Systems (GNSS) and Inertial Navigation System (INS). Special emphasis is placed on the potential faults in the Kalman Filter state prediction step (defined as “filter fault”), which could be caused by the undetected faults occurring previously or the Inertial Measurement Unit (IMU) failures. The integration model is derived first to capture the features and impacts of GNSS faults and filter fault. To accommodate various fault conditions, two independent detectors, which are respectively designated for GNSS fault and filter fault, are rigorously established based on hypothesis-test methods. Following a detection event, the newly-designed exclusion function enables (a) identifying and removing the faulty measurements and (b) eliminating the effect of filter fault through filter recovery. Moreover, we also attempt to avoid wrong exclusion events by analyzing the underlying causes and optimizing the decision strategy for GNSS fault exclusion accordingly. The FDE scheme is validated through multiple simulations, where high efficiency and effectiveness have been achieved in various fault scenarios.


2020 ◽  
Vol 125 (1283) ◽  
pp. 87-108
Author(s):  
C. Chi ◽  
X. Zhan ◽  
S. Wang ◽  
Y. Zhai

ABSTRACTAccurate navigation is required in many Unmanned Aerial Vehicle (UAV) applications. In recent years, GNSS Precise Point Positioning (PPP) has been recognised as an efficient approach for providing precise positioning services. In contrast to the widely used Real-Time Kinematic (RTK), PPP is independent of reference stations, which greatly broadens its scope of application. However, the accuracy and reliability of PPP can be significantly decreased by poor GNSS satellite geometry and outage. In response, a real-time four-constellation GNSS PPP is applied to improve the geometry in this work, and PPP is tightly coupled with an Inertial Measurement Unit (IMU) to smooth the position and velocity output, thus improving the robustness of the navigation solution. Experimental flight tests are carried out using a UAV in an open-sky area, and GNSS-challenged environments are simulated. The results show that the four-constellation GNSS PPP/IMU integration reduces the Root-Mean-Square (RMS) Three-Dimensional (3D) positioning and velocity error by 76.4% and 67.1%, respectively, in open sky with respect to the one-GNSS PPP. Under scenarios where GNSS measurements are insufficient, the coupled system can still provide continuous solutions. Moreover, the coupled PPP/IMU system can also maintain the convergence of PPP during GNSS-challenged periods and can greatly shorten the re-convergence period of PPP when the UAV returns to the open sky.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4305 ◽  
Author(s):  
Yue Liu ◽  
Fei Liu ◽  
Yang Gao ◽  
Lin Zhao

This paper implements and analyzes a tightly coupled single-frequency global navigation satellite system precise point positioning/inertial navigation system (GNSS PPP/INS) with insufficient satellites for land vehicle navigation using a low-cost GNSS receiver and a microelectromechanical system (MEMS)-based inertial measurement unit (IMU). For land vehicle navigation, it is inevitable to encounter the situation where insufficient satellites can be observed. Therefore, it is necessary to analyze the performance of tightly coupled integration in a GNSS-challenging environment. In addition, it is also of importance to investigate the least number of satellites adopted to improve the performance, compared with no satellites used. In this paper, tightly coupled integration using low-cost sensors with insufficient satellites was conducted, which provided a clear view of the improvement of the solution with insufficient satellites compared to no GNSS measurements at all. Specifically, in this paper single-frequency PPP was implemented to achieve the best performance, with one single-frequency receiver. The INS mechanization was conducted in a local-level frame (LLF). An extended Kalman filter was applied to fuse the two different types of measurements. To be more specific, in PPP processing, the atmosphere errors are corrected using a Saastamoinen model and the Center for Orbit Determination in Europe (CODE) global ionosphere map (GIM) product. The residuals of atmosphere errors are not estimated to accelerate the ambiguity convergence. For INS error mitigation, velocity constraints for land vehicle navigation are adopted to limit the quick drift of a MEMS-based IMU. Field tests with simulated partial and full GNSS outages were conducted to show the performance of tightly coupled GNSS PPP/INS with insufficient satellites: The results were classified as long-term (several minutes) and short-term (less than 1 min). The results showed that generally, with GNSS measurements applied, although the number of satellites was not enough, the solution still could be improved, especially with more than three satellites observed. With three GPS satellites used, the horizontal drift could be reduced to a few meters after several minutes. The 3D position error could be limited within 10 m in one minute when three GPS satellites were applied. In addition, a field test in an urban area where insufficient satellites were observed from time to time was also conducted to show the limited solution drift.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1844
Author(s):  
Junren Sun ◽  
Zun Niu ◽  
Bocheng Zhu

The Inertial Navigation System (INS) is often fused with the Global Navigation Satellite System (GNSS) to provide more robust and superior navigation service, especially in degraded signal environments. Compared with loosely and tightly coupled architectures, the Deep Integration (DI) architecture has better tracking and positioning performance. Information is shared among channels, and the assistant information from INS helps to reduce the dynamic stress of tracking loops. However, this vector tracking architecture may result in easy propagation of errors among tracking channels. To solve this problem, a Fault Detection and Exclusion (FDE) method for the deeply integrated BeiDou Navigation Satellite System (BDS)/INS navigation system is proposed in this paper. This method utilizes pre-filters’ outputs and integration filter’s estimations to form test statistics. These statistics can help to detect and exclude both step errors and Slowly Growing Errors (SGEs) correctly. The monitoring capability of the method was verified by a simulation which was based on a software receiver. The simulation results show that the proposed FDE method works effectively. Additionally, the method is convenient to be implemented in real-time applications because of its simplicity.


2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Muwaffaq Alqurashi ◽  
Jinling Wang

AbstractFor positioning, navigation and timing (PNT) purposes, GNSS or GNSS/INS integration is utilised to provide real-time solutions. However, any potential sensor failures or faulty measurements due to malfunctions of sensor components or harsh operating environments may cause unsatisfactory estimation for PNT parameters. The inability for immediate detecting faulty measurements or sensor component failures will reduce the overall performance of the system. So, real time detection and identification of faulty measurements is required to make the system more accurate and reliable for different applications that need real time solutions such as real time mapping for safety or emergency purposes. Consequently, it is necessary to implement an online fault detection and isolation (FDI) algorithm which is a statistic-based approach to detect and identify multiple faults.However, further investigations on the performance of the FDI for multiple fault scenarios is still required. In this paper, the performance of the FDI method under multiple fault scenarios is evaluated, e.g., for two, three and four faults in the GNSS and GNSS/INS measurements under different conditions of visible satellites and satellites geometry. Besides, the reliability (e.g., MDB) and separability (correlation coefficients between faults detection statistics) measures are also investigated to measure the capability of the FDI method. A performance analysis of the FDI method is conducted under the geometric constraints, to show the importance of the FDI method in terms of fault detectability and separability for robust positioning and navigation for real time applications.


Author(s):  
Nikolaos Papakonstantinou ◽  
Scott Proper ◽  
Bryan O’Halloran ◽  
Irem Y. Tumer

The development of Fault Detection and Identification (FDI) systems for complex mechatronic systems is a challenging process. Many quantitative and qualitative fault detection methods have been proposed in past literature. Few methods address multiple faults, instead an emphasis is placed on accurately proving a single fault exists. The omission of multiple faults regulates the capability of most fault detection methods. The Functional Failure Identification and Propagation (FFIP) framework has been utilized in past research for various applications related to fault propagation in complex systems. In this paper a Hierarchical Functional Fault Detection and Identification (HFFDI) system is proposed. The development of the HFFDI system is based on machine learning techniques, commonly used as a basis for FDI systems, and the functional system decomposition of the FFIP framework. The HFFDI is composed of a plant-wide FDI system and function-specific FDI systems. The HFFDI aims at fault identification in multiple fault scenarios using single fault data sets, when faults happen in different system functions. The methodology is applied to a case study of a generic nuclear power plant with 17 system functions. Compared with a plant-wide FDI system, in multiple fault scenarios the HFFDI gave better results for identifying one fault and also was able to identify more than one faults. The case study results show that in two fault scenarios the HFFDI was able to identify one of the faults with 79% accuracy and both faults with 13% accuracy. In three fault scenarios the HFFDI was able to identify one of the faults with 69% accuracy, two faults with 22% accuracy and all three faults with 1% accuracy.


2021 ◽  
Vol 13 (10) ◽  
pp. 1943
Author(s):  
Cheng Pan ◽  
Nijia Qian ◽  
Zengke Li ◽  
Jingxiang Gao ◽  
Zhenbin Liu ◽  
...  

In complex urban environments, a single Global Navigation Satellite System (GNSS) is often not ideal for navigation due to a lack of sufficient visible satellites. Additionally, the heading angle error of a GNSS/micro-electro-mechanical system–grade inertial measurement unit (MIMU) tightly coupled integration based on the single antenna is large, and the attitude angle, velocity, and position calculated therein all have large errors. Considering the above problems, this paper designs a tightly coupled integration of GNSS/MIMU based on two GNSS antennas and proposes a singular value decomposition (SVD)-based robust adaptive cubature Kalman filter (SVD-RACKF) according to the model characteristics of the integration. In this integration, the high-accuracy heading angle of the carrier is obtained through two antennas, and the existing attitude angle information is used as the observation to constrain the filtering estimation. The proposed SVD-RACKF uses SVD to stabilize the numerical accuracy of the recursive filtering. Furthermore, the three-stage equivalent weight function and the adaptive adjustment factor are constructed to suppress the influence of the gross error and the abnormal state on the parameter estimation, respectively. A set of real measured data was employed for testing and analysis. The results show that dual antennas and dual systems can improve the positioning performance of the integrated system to a certain extent, and the proposed SVD-RACKF can accurately detect the gross errors of the observations and effectively suppress them. Compared with the cubature Kalman filter, the proposed filtering algorithm is more robust, with higher accuracy and reliability of parameter estimation.


Sign in / Sign up

Export Citation Format

Share Document