scholarly journals Synthesis of Visible Light Active Delafossite Structured CuCrO2: Optical and Photocatalytic Studies

2021 ◽  
Vol 33 (2) ◽  
pp. 465-470
Author(s):  
Nagarajan Arunkumar

Synthesis of delafossite structured CuCrO2 by sol-gel method using tartaric acid as a complexing agent is reported in present study. The product has been characterized by powder X-ray diffraction, thermal analysis (TGA/DTA), SEM, Raman spectra, BET (surface area analysis) and UV-Vis-diffused reflectance spectroscopy. Powder X-ray diffraction revealed the formation of delafossite structured CuCrO2 phase at 800 ºC for 3 h, which was further confirmed by thermal analysis that showed one weight loss and endothermic peak at above 800 ºC corresponded to the phase transition. Hexagonal plate like morphology of the synthesized powder was confirmed by SEM analysis. The Raman spectra showed three Raman scattering peaks of the delafossite structure of CuCrO2. Diffused reflectance spectroscopy (DRS) revealed that the band gap of the prepared CuCrO2 microcrystals was about 2.90 eV. In addition, the synthesized CuCrO2 was used for the degradation of p-nitrophenol and H2 generation under visible-light which showed 32.4 μmol (10.8 μmol/h) of H2 and 92 % degradation of p-nitrophenol (20 mg/L) after 4 h of visible light irradiation. Further analysis revealed that •OH and •O2 − were the main ROS responsible for p-nitrophenol degradation.

2014 ◽  
Vol 809-810 ◽  
pp. 890-894
Author(s):  
Dan Li ◽  
Lian Wei Shan ◽  
Gui Lin Wang ◽  
Li Min Dong ◽  
Wei Li ◽  
...  

Boron-BiVO4 samples were synthesized by sol-gel method. They were characterized by UV-vis diffuse reflectance spectroscopy, X-ray diffraction. Photocatalytic activity of the obtained BiVO4 samples was investigated through degrading methylene blue (MB). The results reveal that boron-BiVO4 catalysts have monoclinic scheelite structure. The BiVO4 and Co-BiVO4 photocatalysts were responsive to visible light. Co-BiVO4 photocatalyst showed higher photocatalytic activity than pure BiVO4, resulting in the significantly improved efficiency of degradation of MB.


2012 ◽  
Vol 217-219 ◽  
pp. 733-736
Author(s):  
Xiu Mei Han ◽  
Shu Ai Hao ◽  
Ying Ling Wang ◽  
Gui Fang Sun ◽  
Xi Wei Qi

Zn2SiO4:Eu3+, Dy3+ phosphors have been prepared through the sol-gel process. X-ray diffraction (XRD), thermogravimetric and ddifferential thermal analysis (TG-DTA), FT-IR spectra and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicated that the phosphors crystallized completely at 1000oC. In Zn2SiO4:Eu3+,Dy3+ phosphors, the Eu3+ and Dy3+ show their characteristic red(613nm, 5D0-7F2), blue (481nm, 4F9/2–6H15/2) and yellow (577nm, 4F9/2–6H13/2) emissions.


2021 ◽  
Vol 11 (5) ◽  
pp. 706-716
Author(s):  
Nada D. Al-Khthami ◽  
Tariq Altalhi ◽  
Mohammed Alsawat ◽  
Mohamed S. Amin ◽  
Yousef G. Alghamdi ◽  
...  

Different organic pollutants have been remediated photo catalytically by applying perovskite photocatalysts. Atrazine (ATR) is a pesticide commonly detected as a pollutant in drinking, surface and ground water. Herein, FeYO3@rGO heterojunction was synthesized and applied for photooxidation decomposition of ATR. First, FeYO 3nanoparticles (NPs) were prepared via routine sol-gel. After that, FeYO3 NPs were successfully incorporated with different percentages (5, 10, 15 and 20 wt.%) of reduced graphene oxide (rGO) in the synthesis of novel FeYO3@rGO photocatalyst. Morphological, structural, surface, optoelectrical and optical characteristics of constructed materials were identified via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), adsorption/desorption isotherms, diffusive reflectance (DR) spectra, and photoluminescence response (PL). Furthermore, photocatalytic achievement of the constructed materials was evaluated via photooxidative degradation of ATR. Various investigations affirmed the usefulness of rGO incorporation on the advancement of formed photocatalysts. Actually, novel nanocomposite containing rGO (15 wt.%) possessed diminished bandgap energy, as well as magnified visible light absorption. Furthermore, such nanocomposite presented exceptional photocatalytic achievement when exposed to visible light as ATR was perfectly photooxidized over finite amount (1.6 g · L-1) from the optimized photocatalyst when illuminated for 30 min. The advanced photocatalytic performance of constructed heterojunctions could be accredited mainly to depressed recombination amid induced charges. The constructed FeYO3@rGO nanocomposite is labelled as efficient photocatalyst for remediation of herbicides from aquatic environments.


2018 ◽  
Vol 64 (4) ◽  
pp. 381
Author(s):  
Muhammad Tufiq Jamil ◽  
Javed Ahmad ◽  
Syed Hamad Bukhari ◽  
Murtaza Saleem

Rare earth nano sized pollycrystalline orthoferrites and orthocromites ReT mO3 (Re = La, Nd, Gd, Dy, Y and T m = Fe, Cr) have been synthesized by sol-gel auto combustion citrate method. The samples have been characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and UV-visible spectroscopy. The samples are single phase as confirmed by XRD analysis and correspond to the orthorhombic crystal symmetry with space group pbnm. Debye Scherer formula and Williamson Hall analysis have been used to calculate the average grain size which is consistent with that of determined from SEM analysis and varied between 25-75 nm. The elemental compositions of all samples have been checked by EDX analysis. Different crystallographic parameters are calculated with strong structural correlation among Re and Tm sites. The optical energy band gap has been calculated by using Tauc relation estimated to be in the range of 1.77 - 1.87 eV and 2.77 - 3.14 eV, for ReFeO3 and ReCrO3, respectively.


Author(s):  
Selma M.H. AL-Jawad ◽  
Zahraa S. Shakir ◽  
Duha S. Ahmed

ZnO/MWCNTs hybrid and doped with different concentration of Nickel element prepared by using Sol-gel been technique reported. All samples were prepared and characterized by X-Ray Diffraction Analysis (XRD), Energy Dispersive X-ray Spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), Field-Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis spectroscopy have been identified the structural, optical and morphological properties. X-ray diffraction showed the polycrystalline nature with hexagonal wutzite structure of hybrid and doped with Nickel. The crystalline size of the hybrid nanostructure was increasing from 23.73 nm to 34.59 nm. Besides, the UV-Vis spectroscopy showed a significant decrease in the band gap values from 2.97 eV to 2.01 eV. Whereas the FE-SEM analysis confirm the formation spherical shapes of ZnO NPs deposited on cylindrical tubes representing the MWCNTs. The antibacterial activity reveals that the inhibition zone of Ni doped-ZnO/MWCNTs hybrid was 28.5 mm, 26.5 mm toward E. coli and S. aureus bacteria, respectively.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1671 ◽  
Author(s):  
Weike Zhang ◽  
Yanrong Zhang ◽  
Kai Yang ◽  
Yanqing Yang ◽  
Jia Jia ◽  
...  

A silicon dioxide/carbon nano onions/titanium dioxide (SiO2/CNOs/TiO2) composite was synthesized by a simple sol-gel method and characterized by the methods of X-ray diffraction (XRD), scanning electronic microscope (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR), thermogravimetric analysis (TG), differential scanning calorimeter (DSC) and UV-Vis diffuse reflectance spectra (UV-Vis DRS). In this work, the photocatalytic activity of the SiO2/CNOs/TiO2 photocatalyst was assessed by testing the degradation rate of Rhodamine B (RhB) under visible light. The results indicated that the samples exhibited the best photocatalytic activity when the composite consisted of 3% CNOs and the optimum dosage of SiO2/CNOs/TiO2(3%) was 1.5 g/L as evidenced by the highest RhB degradation rate (96%). The SiO2/CNOs/TiO2 composite greatly improved the quantum efficiency of TiO2. This work provides a new option for the modification of subsequent nanocomposite oxide nanoparticles.


2013 ◽  
Vol 538 ◽  
pp. 142-145 ◽  
Author(s):  
X.F. Chen ◽  
J. Li ◽  
T.T. Feng ◽  
Y.S. Jiang ◽  
X.H. Zhang ◽  
...  

The forsterite-structure Mg2SiO4 was successfully synthesized by the aqueous sol-gel method using Si sols dioxide and magnesium nitrate as starting materials instead of expensive organic solvent and metal alkoxides. The as-prepared nanopowders were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA) and scanning electron microscope (SEM), respectively. The results showed that the calcination process of gel consisted of a series of oxidation and combustion reactions, accompanied by significantly exothermal effects. Highly reactive nanosized Mg2SiO4 powders were successfully obtained at 850 °C with particle size of 60~80 nm.


2007 ◽  
Vol 534-536 ◽  
pp. 165-168 ◽  
Author(s):  
Luo Ji ◽  
Lin Tao ◽  
Zhi Meng Guo ◽  
Cheng Chang Jia

Vacuum carburization of nanometer tungsten powder was investigated in a simple designed apparatus. An X-Y recorder was used to plot differential thermal analysis (DTA) curves to determine the starting temperature of carburization of four samples with different specific surface area. The product was characterized by X-ray Diffraction (XRD) and small angle X-ray scattering (SAXS). The results show that finer tungsten powder has lower starting temperature of carburization. Tungsten powder, the BET surface area of which is 32.97m2/g, was completely carburized to tungsten carbide at 1050°C, even though the starting temperature was 890°C. The particle was found to grow sharply before carburization.


2016 ◽  
Vol 864 ◽  
pp. 117-122 ◽  
Author(s):  
Hesni Shabrany ◽  
Hendry Tju ◽  
Ardiansyah Taufik ◽  
Rosari Saleh

This paper discusses the catalytic activity of ZnO/CuO/nanographene platelets composites under visible light and ultrasound irradiation separately. The ZnO/CuO/nanographene platelets composites were synthesized using a sol-gel method. X-ray diffraction and nitrogen adsorption spectroscopy were employed to investigate the structural and surface area of the catalyst. The catalytic activity results showed that the presence of nanographene platelets in ZnO/CuO nanocomposites improved its efficiency in degrading methylene blue. A scavenger method was also used to understand the role of charged carriers and the active radical involved in the catalytic activity.


2018 ◽  
Vol 63 (1) ◽  
pp. 85-95 ◽  
Author(s):  
Harish Phattepur ◽  
Gowrishankar Bychapur Siddaiah ◽  
Nagaraju Ganganagappa

A sol-gel method was employed to synthesise pure titanium dioxide (TiO2) and surfactant assisted TiO2 nanoparticles (NPs). The effect of novel surfactant viz., Lauryl lactyl lactate on photocatalytic properties of TiO2 was studied. TiO2 NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-Vis Diffuse Reflectance spectra (DRS), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), Thermo gravimetric analysis (TGA), and Brunauer – Emmet - Teller (BET) surface area. Anatase phase of TiO2 was confirmed by X-Ray diffraction pattern and the crystallite size was between 9–19 nm. Addition of surfactant improved the BET surface area, surface defects, while the agglomeration of particles was reduced. DRS results revealed that the addition of surfactant to TiO2 sol induced a red shift of the absorption edge which resulted in the reduction of band gap from 3.23 to 3.21 eV. These physicochemical properties of TiO2 NPs were correlated with photocatalytic degradation of phenol. About 92% of phenol degradation was observed for surfactant assisted TiO2 NPs (SA-TiO2). Salicylic acid and caffeine were also degraded using SA-TiO2 NPs.


Sign in / Sign up

Export Citation Format

Share Document