Novel Diastereoselective Synthesis of 1-Trimethylgermyl-1-alkenes by Hydrolysis of α-Trimethylgermylzirconacyclopentenes

2020 ◽  
Vol 5 (2) ◽  
pp. 161-163
Author(s):  
Narayan G. Bhat ◽  
Maria Villarreal

1-Trimethyl-1-germylalkynes were synthesized by deprotonation of terminal alkynes with n-butyl lithium at low temperature followed by treatment with trimethylgermyl chloride under nitrogen atmosphere. The reagent system Cp2ZrCl2/2EtMgBr converts 1-trimethylgermyl-1-alkynes into α- trimethylgermylzirconacyclopentenes at -78 ºC for 1 h followed by stirring at room temperature overnight. These novel intermediates are hydrolyzed at 0 ºC for an hour to provide the corresponding (Z)-1-trimethylgermyl-1-alkenes in good yields (74-85%) and in high stereochemical purities (> 98%) as evidenced by 13C spectral data.

Author(s):  
T. Baird ◽  
J.R. Fryer ◽  
S.T. Galbraith

Introduction Previously we had suggested (l) that the striations observed in the pod shaped crystals of β FeOOH were an artefact of imaging in the electron microscope. Contrary to this adsorption measurements on bulk material had indicated the presence of some porosity and Gallagher (2) had proposed a model structure - based on the hollandite structure - showing the hollandite rods forming the sides of 30Å pores running the length of the crystal. Low resolution electron microscopy by Watson (3) on sectioned crystals embedded in methylmethacrylate had tended to support the existence of such pores.We have applied modern high resolution techniques to the bulk crystals and thin sections of them without confirming these earlier postulatesExperimental β FeOOH was prepared by room temperature hydrolysis of 0.01M solutions of FeCl3.6H2O, The precipitate was washed, dried in air, and embedded in Scandiplast resin. The sections were out on an LKB III Ultramicrotome to a thickness of about 500Å.


2004 ◽  
Vol 52 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Cs. Pribenszky ◽  
M. Molnár ◽  
S. Cseh ◽  
L. Solti

Cryoinjuries are almost inevitable during the freezing of embryos. The present study examines the possibility of using high hydrostatic pressure to reduce substantially the freezing point of the embryo-holding solution, in order to preserve embryos at subzero temperatures, thus avoiding all the disadvantages of freezing. The pressure of 210 MPa lowers the phase transition temperature of water to -21°C. According to the results of this study, embryos can survive in high hydrostatic pressure environment at room temperature; the time embryos spend under pressure without significant loss in their survival could be lengthened by gradual decompression. Pressurisation at 0°C significantly reduced the survival capacity of the embryos; gradual decompression had no beneficial effect on survival at that stage. Based on the findings, the use of the phenomena is not applicable in this form, since pressure and low temperature together proved to be lethal to the embryos in these experiments. The application of hydrostatic pressure in embryo cryopreservation requires more detailed research, although the experience gained in this study can be applied usefully in different circumstances.


2019 ◽  
Vol 23 (16) ◽  
pp. 1778-1788 ◽  
Author(s):  
Gurpreet Kaur ◽  
Arvind Singh ◽  
Kiran Bala ◽  
Mamta Devi ◽  
Anjana Kumari ◽  
...  

A simple, straightforward and efficient method has been developed for the synthesis of (E)-3-(arylimino)indolin-2-one derivatives and (E)-2-((4-methoxyphenyl)imino)- acenaphthylen-1(2H)-one. The synthesis of these biologically-significant scaffolds was achieved from the reactions of various substituted anilines and isatins or acenaphthaquinone, respectively, using commercially available, environmentally benign and naturally occurring organic acids such as mandelic acid or itaconic acid as catalyst in aqueous medium at room temperature. Mild reaction conditions, energy efficiency, good to excellent yields, environmentally benign conditions, easy isolation of products, no need of column chromatographic separation and the reusability of reaction media are some of the significant features of the present protocol.


Author(s):  
Yogita P. Labrath ◽  
Prafulla V. Belge ◽  
Uma G. Kulkarni ◽  
Vilas G. Gaikar

Abstract The turmeric rhizome (Curcuma longa) contains curcuminoids embedded in the starch matrix. It is thus important to target starch hydrolysis to enhance extraction of curcuminoids. In the case of starch hydrolysis, α-amylase is more efficient when the starch is in a gelatinised form than when it is in its natural form. The present work includes hydrolysis of turmeric starch in its natural and gelatinised forms using α-amylase in hydrotrope solution (HS) and scCO2. The optimum rate of starch hydrolysis was obtained using 200 IU cm−3 of α-amylase, at reaction conditions of 6.5 pH at 328 K when 10% w/w of turmeric powder was stirred at 900 rpm in HSs. The hydrolysis in 15 MPa scCO2 at room temperature required a phase modifier and 40 min of residence time (RT). The enzyme treatment of turmeric powder in HSs increased the filtration rate for curcuminoid extraction (gelatinised and native) compared to untreated turmeric powder.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 527
Author(s):  
Katarzyna Czyzewska ◽  
Anna Trusek

The current requirements of industrial biocatalysis are related to economically beneficial and environmentally friendly processes. Such a strategy engages low-temperature reactions. The presented approach is essential, especially in food processes, where temperature affects the quality and nutritional value foodstuffs. The subject of the study is the hydrolysis of lactose with the commercial lactase NOLA™ Fit 5500 (NOLA). The complete decomposition of lactose into two monosaccharides gives a sweeter product, recommended for lactose intolerant people and those controlling a product’s caloric content. The hydrolysis reaction was performed at 15 °C, which is related to milk transportation and storage temperature. The enzyme showed activity over the entire range of substrate concentrations (up to 55 g/L lactose). For reusability and easy isolation, the enzyme was encapsulated in a sodium alginate network. Its stability allows carrying out six cycles of the complete hydrolysis of lactose to monosaccharides, lasting from two to four hours. During the study, the kinetic description of native and encapsulated NOLA was conducted. As a result, the model of competitive galactose inhibition and glucose mixed influence (competitive inhibition and activation) was proposed. The capsule size does not influence the reaction rate; thus, the substrate diffusion into capsules can be omitted from the process description. The prepared 4 mm capsules are easy to separate between cycles, e.g., using sieves.


Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 43
Author(s):  
Marco Mangiagalli ◽  
Marina Lotti

β-galactosidases (EC 3.2.1.23) catalyze the hydrolysis of β-galactosidic bonds in oligosaccharides and, under certain conditions, transfer a sugar moiety from a glycosyl donor to an acceptor. Cold-active β-galactosidases are identified in microorganisms endemic to permanently low-temperature environments. While mesophilic β-galactosidases are broadly studied and employed for biotechnological purposes, the cold-active enzymes are still scarcely explored, although they may prove very useful in biotechnological processes at low temperature. This review covers several issues related to cold-active β-galactosidases, including their classification, structure and molecular mechanisms of cold adaptation. Moreover, their applications are discussed, focusing on the production of lactose-free dairy products as well as on the valorization of cheese whey and the synthesis of glycosyl building blocks for the food, cosmetic and pharmaceutical industries.


2021 ◽  
Vol 23 (10) ◽  
pp. 6182-6189
Author(s):  
Dariusz M. Niedzwiedzki

Photophysical properties of N719 and Z907, benchmark Ru-dyes used as sensitizers in dye-sensitized solar cells, were studied by static and time-resolved optical spectroscopy at room temperature and 160 K.


Author(s):  
Lauryna Sinusaite ◽  
Anton Popov ◽  
Eva Raudonyte-Svirbutaviciene ◽  
Jen-Chang Yang ◽  
Aivaras Kareiva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document