DFT Based QSAR Studies of Phenyl Triazolinones of Protoporphyrinogen Oxidase Inhibitors

2020 ◽  
Vol 5 (4) ◽  
pp. 307-311
Author(s):  
Bikash Kumar Sarkar

The quantitative structure activity relationships (QSARs) have been investigated on a series of substituted phenyl triazolinones having protoporphyrinogen oxidase (PPO) inhibition activities. The density functional theory (DFT) method is applied to calculate the quantum chemical descriptors. The derived QSAR model is based on three molecular descriptors namely highest occupied molecular orbital (HOMO) energy, electrophilic group frontier electron density (Fg E) and nucleus independent chemical shift (NICS). The best QSAR model has a square correlation coefficient r2 =0.886 and cross-validated square correlation coefficient q2 = 0.837.

RSC Advances ◽  
2016 ◽  
Vol 6 (38) ◽  
pp. 31968-31975 ◽  
Author(s):  
Shuai Zhao ◽  
Liguo Gao ◽  
Chunfeng Lan ◽  
Shyam S. Pandey ◽  
Shuzi Hayase ◽  
...  

In this work, we present a detailed first-principles investigation on the stoichiometric and oxygen-deficient structures of double perovskites, Sr2BMoO6 (B = Mg, Co and Ni), using the density functional theory (DFT) method.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Laura Cecilia Bichara ◽  
Hernán Enrique Lanús ◽  
Evelina Gloria Ferrer ◽  
Mónica Beatriz Gramajo ◽  
Silvia Antonia Brandán

We have carried out a structural and vibrational theoretical study for the citric acid dimer. The Density Functional Theory (DFT) method with the B3LYP/6-31G∗ and B3LYP/6-311++ methods have been used to study its structure and vibrational properties. Then, in order to get a good assignment of the IR and Raman spectra in solid phase of dimer, the best fit possible between the calculated and recorded frequencies was carry out and the force fields were scaled using the Scaled Quantum Mechanic Force Field (SQMFF) methodology. An assignment of the observed spectral features is proposed. A band of medium intensity at 1242  together with a group of weak bands, previously not assigned to the monomer, was in this case assigned to the dimer. Furthermore, the analysis of the Natural Bond Orbitals (NBOs) and the topological properties of electronic charge density by employing Bader's Atoms in Molecules theory (AIM) for the dimer were carried out to study the charge transference interactions of the compound.


2020 ◽  
Author(s):  
Saeedeh Mohammadi ◽  
Mohammad Esmailpour ◽  
Mina Mohammadi

Abstract This paper is a new step in helping the treatment of coronavirus by improving the performance of chloroquine drug. For this purpose, we propose a complex of chloroquine drug with graphene nanoribbon (GNR) scheme. We compute the structural and electrical properties and absorption of chloroquine (C18H26ClN3) and GNR complex using the density functional theory (DFT) method. By creating a drug and GNR complex, the density of states of electrons increases and the energy gap decreases compared to the chloroquine. Also, using absorption calculations and spectrums such as infrared and UV-Vis spectra, we showed that GNR is a suitable structure for creating chloroquine drug complex. Our results show that the dipole moment, global softness and electrophilicity for the drug complex increases compared to the non-complex state. Our calculations can be useful for increasing performance and reducing the side effects of chloroquine, and thus can be effective in treating coronavirus.


Author(s):  
Ashutosh Kumar Gupta ◽  
Arindam Chakraborty ◽  
Santanab Giri ◽  
Venkatesan Subramanian ◽  
Pratim Chattaraj

In this paper, quantitative–structure–toxicity–relationship (QSTR) models are developed for predicting the toxicity of halogen, sulfur and chlorinated aromatic compounds. Two sets of compounds, containing mainly halogen and sulfur inorganic compounds in the first set and chlorinated aromatic compounds in the second, are investigated for their toxicity level with the aid of the conceptual Density Functional Theory (DFT) method. Both sets are tested with the conventional density functional descriptors and with a newly proposed net electrophilicity descriptor. Associated R2, R2CV and R2adj values reveal that in the first set, the proposed net electrophilicity descriptor (??±) provides the best result, whereas in the second set, electrophilicity index (?) and a newly proposed descriptor, net electrophilicity index (??±) provide a comparable performance. The potential of net electrophilicity index to act as descriptor in development of QSAR model is also discussed.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1783
Author(s):  
Hao-Ran Wang ◽  
Chong Zhang ◽  
Bing-Cheng Hu ◽  
Xue-Hai Ju

Energetic salts based on pentazolate anion (cyclo-N5−) have attracted much attention due to their high nitrogen contents. However, it is an enormous challenge to efficiently screen out an appropriate cation that can match well with cyclo-N5−. The vertical electron affinity (VEA) of the cations and vertical ionization potential (VIP) of the anions for 135 energetic salts and some cyclo-N5− salts were calculated by the density functional theory (DFT). The magnitudes of VEA and VIP, and their matchability were analyzed. The results based on the calculations at the B3LYP/6-311++G(d,p) and B3LYP/aug-cc-pVTZ levels indicate that there is an excellent compatibility between cyclo-N5− and cation when the difference between the VEA of cation and the VIP of cyclo-N5− anion is −2.8 to −1.0 eV. The densities of the salts were predicted by the DFT method. Relationship between the calculated density and the experimental density was established as ρExpt = 1.111ρcal − 0.06067 with a correlation coefficient of 0.905. This regression equation could be in turn used to calibrate the calculated density of the cyclo-N5− energetic salts accurately. This work provides a favorable way to explore the energetic salts with excellent performance based on cyclo-N5−.


2018 ◽  
Vol 96 (10) ◽  
pp. 949-956 ◽  
Author(s):  
Si-Yu Xu ◽  
Zhou-Yu Meng ◽  
Feng-Qi Zhao ◽  
Xue-Hai Ju

A series of guanidine cations and azole anions were designed for use as energetic salts. Their geometrical structures were optimized by the density functional theory (DFT) method. The counter ions were matched by the similar magnitude of the electron affinity (EA) of the cation and the ionization potential (IP) of the anion. The densities, heats of formation, detonation parameters, and impact sensitivity were predicted. The incorporation of guanidine cations and diazole anions are favorable to form thermal stable salts except cation A1. The diaminoguanidine cation has greater impact on the density and detonation properties of the salts than the triaminoguanidine cation. 2-Amino-3-nitroamino-4,5-nitro-dinitropyrazole is the best anion for advancing the detonation performance among all the anions. Incorporating the C=O bond into the guanidine cations enhances the density and detonation performance of the guanidine-azole salts. The salts containing III1–III4 anion have better detonation properties than HMX, indicating that these salts are potential energetic compounds. Compared with RDX or HMX, some salts with diaminoguanidine cation display lower impact sensitivity.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 359 ◽  
Author(s):  
Hanwei Li ◽  
Mingliang Luo ◽  
Guohong Tao ◽  
Song Qin

Computational investigations on the bisphospholanoethane (BPE)-ligated Cu-catalyzed enantioselective addition of enynes to ketones were performed with the density functional theory (DFT) method. Two BPE-mesitylcopper (CuMes) catalysts, BPE-CuMes and (S,S)-Ph-BPE–CuMes, were employed to probe the reaction mechanism with the emphasis on stereoselectivity. The calculations on the BPE-CuMes system indicate that the active metallized enyne intermediate acts as the catalyst for the catalytic cycle. The catalytic cycle involves two steps: (1) ketone addition to the alkene moiety of the metallized enyne; and (2) metallization of the enyne followed by the release of product with the recovery of the active metallized enyne intermediate. The first step accounts for the distribution of the products, and therefore is the stereo-controlling step in chiral systems. In the chiral (S,S)-Ph-BPE–CuMes system, the steric hindrance is vital for the distribution of products and responsible for the stereoselectivity of this reaction. The steric hindrance between the phenyl ring of the two substrates and groups at the chiral centers in the ligand skeleton is identified as the original of the stereoselectivity for the titled reaction.


2019 ◽  
Vol 20 (6) ◽  
pp. 1450 ◽  
Author(s):  
Yan-Zhen Zheng ◽  
Geng Deng ◽  
Rui Guo ◽  
Da-Fu Chen ◽  
Zhong-Min Fu

The radical scavenging activity of a flavonoid is largely influenced by its structure. The effects of the substituents at C3 position on the antioxidant activity of naringenin were carried out using the density functional theory (DFT) method. The reaction enthalpies related with the three well-established mechanisms were analyzed. Excellent correlations were found between the reaction enthalpies and Hammett sigma constants. Equations obtained from the linear regression can be helpful in the selection of suitable candidates for the synthesis of novel naringenin derivatives with enhanced antioxidant properties. In the gas and benzene phases, the antioxidant activity of naringenin was enhanced by the electron-donating substituents via weakening the bond dissociation enthalpy (BDE). In the water phase, it was strengthened by electron-withdrawing groups—via lowering the proton affinity (PA). The electronic effect of the substituent on the BDE of naringenin is mainly governed by the resonance effect, while that on the ionization potential (IP) and PA of naringenin is mainly controlled by the field/inductive effect.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 283 ◽  
Author(s):  
Martyna Durka ◽  
Krzysztof Durka ◽  
Agnieszka Adamczyk-Woźniak ◽  
Wojciech Wróblewski

Piperazine-based compounds bearing two phenylboronic acid or two benzoxaborole groups (PBPA and PBBB) were applied as dopamine receptors in polymeric membranes (PVC/DOS) of ion-selective electrodes. The potentiometric sensitivity and selectivity of the sensors towards dopamine were evaluated and compared with the results obtained for 2-phenylethylamine. Since the developed electrodes displayed strong interference from 2-phenylethylamine, single-molecule geometry optimizations were performed using the density functional theory (DFT) method in order to investigate the origin of dopamine/2-phenylethylamine selectivity. The results indicated that phenylboronic acid and benzoxaborole receptors bind dopamine mainly through the dative B–N bond (like 2-phenylethylamine) and the potentiometric selectivity is mainly governed by the higher lipophilicity of 2-phenylethylamine.


2009 ◽  
Vol 87 (10) ◽  
pp. 1392-1405 ◽  
Author(s):  
Sven Tobisch

The density functional theory (DFT) method has been employed to unravel mechanistic intricacies of the 1,4-polymerization of 1,3-butadiene mediated by the [(η3-RC3H4)FeII(C15H11N3)(η2-C4H6)]+ terpyridine–iron(II) active catalyst species. The π-allyl-insertion mechanism is operative for chain growth, whilst the alternative σ-allyl-insertion mechanism has been explicitly demonstrated as being inoperable. This study elucidates the mechanism of cis–trans regulation and unveils the factors that govern the observed high trans-1,4 stereoselectivity, in particular, the discriminative role of allylic isomerization. An atactic trans-1,4-polydiene is expected from polymerization of a terminally monosubstituted butadiene, the experimental results of which have not been reported thus far.


Sign in / Sign up

Export Citation Format

Share Document