Estimating link flows from limited traffic volume and sparse trajectory data: generative modelling approaches

2021 ◽  
Author(s):  
◽  
Miner Zhong
2022 ◽  
Vol 13 (1) ◽  
pp. 1-21
Author(s):  
Hui Luo ◽  
Zhifeng Bao ◽  
Gao Cong ◽  
J. Shane Culpepper ◽  
Nguyen Lu Dang Khoa

Traffic bottlenecks are a set of road segments that have an unacceptable level of traffic caused by a poor balance between road capacity and traffic volume. A huge volume of trajectory data which captures realtime traffic conditions in road networks provides promising new opportunities to identify the traffic bottlenecks. In this paper, we define this problem as trajectory-driven traffic bottleneck identification : Given a road network R , a trajectory database T , find a representative set of seed edges of size K of traffic bottlenecks that influence the highest number of road segments not in the seed set. We show that this problem is NP-hard and propose a framework to find the traffic bottlenecks as follows. First, a traffic spread model is defined which represents changes in traffic volume for each road segment over time. Then, the traffic diffusion probability between two connected segments and the residual ratio of traffic volume for each segment can be computed using historical trajectory data. We then propose two different algorithmic approaches to solve the problem. The first one is a best-first algorithm BF , with an approximation ratio of 1-1/ e . To further accelerate the identification process in larger datasets, we also propose a sampling-based greedy algorithm SG . Finally, comprehensive experiments using three different datasets compare and contrast various solutions, and provide insights into important efficiency and effectiveness trade-offs among the respective methods.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8004
Author(s):  
Sang-Lok Yoo ◽  
Kwang-Il Kim

Vessel traffic volume and vessel traffic service (VTS) operator workloads are increasing with the expansion of global maritime trade, contributing to marine accidents by causing difficulties in providing timely services. Therefore, it is essential to have sufficient VTS operators considering the vessel traffic volume and near-miss cases. However, no quantitative method for determining the optimal number of workstations, which is necessary for calculating the VTS operator staffing level, has yet been proposed. This paper proposes a new, microscopic approach for calculating the number of workstations from vessel trajectories and voice recording communication data between VTS operators and navigators. The vessel trajectory data are preprocessed to interpolate different intervals. The proposed method consists of three modules: Information services, navigational assistance services, and traffic organization service. The developed model was applied to the Yeosu VTS in Korea. Another workstation should be added to the current workstation based on the proposed method. The results showed that even without annual statistical data, a reasonable VTS operator staffing level could be calculated. The proposed approach helps prevent vessel accidents by providing timely services even if the vessel traffic is congested if VTS operators are deployed to a sufficient number of workstations.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Youqiang Sun ◽  
Yeqing Ren ◽  
Xingjuan Cai

Emergency logistics scheduling appears more and more important in modern society because of frequent occurrence of unpredictable disasters. Most of the existing studies consider a certain emergency logistics scheduling model, and most of them are based on an ideal scenario. Considering the uncertain traffic condition and the real road condition, a biobjective emergency logistics scheduling model is proposed, which includes two objectives: transportation time and transportation cost. The uncertainty of the proposed model is reflected in two aspects: the occurrence time of emergencies and the traffic volume predicted by the cloud model. The numerical characteristics of traffic information are abstracted from the spatial-temporal trajectory data by the reverse cloud model, and the inference procedure of the one-dimension cloud model further predicts the uncertain traffic volume using the numerical characteristics. In addition, the crossover and mutation operators of multiobjective evolutionary algorithms are modified to solve the model. The experimental results show that the inference procedure of one-dimension cloud model can accurately predict the traffic volume at the departure time; and the proposed model is more reasonable than the existing scheduling models; at the same time, the improved NSGA-II can also provide superior schemes in different departure times and traffic conditions for decision makers.


2017 ◽  
Vol 29 (2) ◽  
pp. 272-285 ◽  
Author(s):  
Xianyuan Zhan ◽  
Yu Zheng ◽  
Xiuwen Yi ◽  
Satish V. Ukkusuri

2020 ◽  
Vol 25 (4) ◽  
pp. 1405-1417 ◽  
Author(s):  
Li Kuang ◽  
Chunbo Hua ◽  
Jiagui Wu ◽  
Yuyu Yin ◽  
Honghao Gao

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jarosław Socha ◽  
Luiza Tymińska-Czabańska ◽  
Karol Bronisz ◽  
Stanisław Zięba ◽  
Paweł Hawryło

AbstractSite productivity remains a fundamental concern in forestry as a significant driver of resource availability for tree growth. The site index (SI) reflects the overall impact of all environmental factors that determine tree height growth and is the most commonly used indirect proxy for forest site productivity estimated using stand age and height. The SI concept challenges are local variations in climate, soil, and genotype-environmental interactions that lead to variable height growth patterns among ecoregions and cause inappropriate estimation of site productivity. Developing regional models allow us to determine forest growth and SI more appropriately. This study aimed to develop height growth models for the Scots pine in Poland, considering the natural forest region effect. For height growth modelling, we used the growth trajectory data of 855 sample trees, representing the Scots pine entire range of geographic locations and site conditions in Poland. We compared the development of regional height growth models using nonlinear-fixed-effects (NFE) and nonlinear-mixed-effects (NME) modelling approaches. Our results indicate a slightly better fit to the data of the model built using NFE approach. The results showed significant differences between Scots pine growth in natural forest regions I, II, and III located in northern Poland and natural forest regions IV, V, and VI in southern Poland. We compared the development of regional height growth models using NFE and NME modelling approaches. Our results indicate a slightly better fit to the data of the model built using the NFE approach. The developed models show differences in height growth patterns of Scots pines in Poland and revealed that acknowledgement of region as the independent variable could improve the growth prediction and quality of the SI estimation. Differences in climate and soil conditions that distinguish natural forest regions affect Scots pine height growth patterns. Therefore, extending this research to models that directly describe height growth interactions with site variables, such as climate, soil properties, and topography, can provide valuable forest management information.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Zuyao Zhang ◽  
Li Tang ◽  
Yifeng Wang ◽  
Xuejun Zhang

2020 ◽  
Vol 9 (1) ◽  
pp. 32-37
Author(s):  
Ruslan Hidayat ◽  
Saiful Arfaah

One of the most important factors in the structure of the pile foundation in the construction of the bridge is the carrying capacity of the soil so as not to collapse. Construction of a bridge in the village of Klitik in Jombang Regency to be built due to heavy traffic volume. The foundation plan to be used is a pile foundation with a diameter of 50 cm, the problem is what is the value of carrying capacity of soil and material. The equipment used is the Dutch Cone Penetrometer with a capacity of 2.50 tons with an Adhesion Jacket Cone. The detailed specifications of this sondir are as follows: Area conus 10 cm², piston area 10 cm², coat area 100 cm², as for the results obtained The carrying capacity of the soil is 60.00 tons for a diameter of 30 cm, 81,667 tons for a diameter of 35 cm, 106,667 tons for a diameter of 40 cm, 150,000 tons for a diameter of 50 cm for material strength of 54,00 tons for a diameter of 30 cm, 73,500 tons for a diameter of 35 cm, 96,00 tons for a diameter of 40 cm, 166,666 tons for a diameter of 50 cm


2018 ◽  
Vol 7 (1) ◽  
pp. 51-60
Author(s):  
Fitri Wulandari ◽  
Nirwana Puspasari ◽  
Noviyanthy Handayani

Jalan Temanggung Tilung is a 2/2 UD type road (two undirected two-way lanes) with a road width of 5.5 meters, which is a connecting road between two major roads, namely the RTA road. Milono and the path of G. Obos. Over time, the volume of traffic through these roads increases every year, plus roadside activities that also increase cause congestion at several points of the way. To overcome this problem, the local government carried out road widening to increase the capacity and level of road services. The study was conducted to determine the amount of traffic volume, performance, service level of the Temanggung Tilung road section at peak traffic hours before and after road widening. Data retrieval is done by the direct survey to the field to obtain primary data in the form of geometric road data, two-way traffic volume data, and side obstacle data. Performance analysis refers to the 1997 Indonesian Road Capacity Manual (MKJI) for urban roads. From the results of data processing, before increasing the road (Type 2/2 UD), the traffic volume that passes through the path is 842 pcs/hour and after road widening (Type 4/2 UD) the traffic volume for two directions is 973 pcs/hour, with route A equaling 528 pcs/hour and direction B equaling 445 pcs/hour. Based on the analysis of road performance before road enhancement, the capacity = 2551 pcs/hour, saturation degree = 0.331, and the service level of the two-way road are level B. Based on the analysis of the performance of the way after increasing the way, the direction capacity A = 2686 pcs/hour and direction B = 2674 pcs /hour, saturation degree for direction A = 0.196 and direction B = 0.166, service level for road direction A and direction B increase to level A


Sign in / Sign up

Export Citation Format

Share Document