Top-down influences and the crossmodal modulation of visual perception by auditory stimuli: an investigation into how the brain resolves sensory ambiguity crossmodally using prior knowledge in the construction of multisensory perception

2018 ◽  
Author(s):  
Mirko Zeljko
Author(s):  
Martin V. Butz ◽  
Esther F. Kutter

This chapter addresses primary visual perception, detailing how visual information comes about and, as a consequence, which visual properties provide particularly useful information about the environment. The brain extracts this information systematically, and also separates redundant and complementary visual information aspects to improve the effectiveness of visual processing. Computationally, image smoothing, edge detectors, and motion detectors must be at work. These need to be applied in a convolutional manner over the fixated area, which are computations that are predestined to be solved by means of cortical columnar structures in the brain. On the next level, the extracted information needs to be integrated to be able to segment and detect object structures. The brain solves this highly challenging problem by incorporating top-down expectations and by integrating complementary visual information aspects, such as light reflections, texture information, line convergence information, shadows, and depth information. In conclusion, the need for integrating top-down visual expectations to form complete and stable perceptions is made explicit.


2019 ◽  
Author(s):  
Pantelis Leptourgos ◽  
Charles-Edouard Notredame ◽  
Marion Eck ◽  
Renaud Jardri ◽  
Sophie Denève

AbstractWhen facing fully ambiguous images, the brain cannot commit to a single percept and instead switches between mutually exclusive interpretations every few seconds, a phenomenon known as bistable perception. Despite years of research, there is still no consensus on whether bistability, and perception in general, is driven primarily by bottom-up or top-down mechanisms. Here, we adopted a Bayesian approach in an effort to reconcile these two theories. Fifty-five healthy participants were exposed to an adaptation of the Necker cube paradigm, in which we manipulated sensory evidence (by shadowing the cube) and prior knowledge (e.g., by varying instructions about what participants should expect to see). We found that manipulations of both sensory evidence and priors significantly affected the way participants perceived the Necker cube. However, we observed an interaction between the effect of the cue and the effect of the instructions, a finding incompatible with Bayes-optimal integration. In contrast, the data were well predicted by a circular inference model. In this model, ambiguous sensory evidence is systematically biased in the direction of current expectations, ultimately resulting in a bistable percept.


Author(s):  
Bruno and

Synaesthesia is a curious anomaly of multisensory perception. When presented with stimulation in one sensory channel, in addition to the percept usually associated with that channel (inducer) a true synaesthetic experiences a second percept in another perceptual modality (concurrent). Although synaesthesia is not pathological, true synaesthetes are relatively rare and their synaesthetic associations tend to be quite idiosyncratic. For this reason, studying synaesthesia is difficult, but exciting new experimental results are beginning to clarify what makes the brain of synaesthetes special and the mechanisms that may produce the condition. Even more importantly, the related phenomenon known as ‘natural’ crossmodal associations is instead experienced by everyone, providing another useful domain for studying multisensory interactions with important implications for understanding our preferences for products in terms of spontaneously evoked associations, as well as for choosing appropriate names, labels, and packaging in marketing applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Domenica Veniero ◽  
Joachim Gross ◽  
Stephanie Morand ◽  
Felix Duecker ◽  
Alexander T. Sack ◽  
...  

AbstractVoluntary allocation of visual attention is controlled by top-down signals generated within the Frontal Eye Fields (FEFs) that can change the excitability of lower-level visual areas. However, the mechanism through which this control is achieved remains elusive. Here, we emulated the generation of an attentional signal using single-pulse transcranial magnetic stimulation to activate the FEFs and tracked its consequences over the visual cortex. First, we documented changes to brain oscillations using electroencephalography and found evidence for a phase reset over occipital sites at beta frequency. We then probed for perceptual consequences of this top-down triggered phase reset and assessed its anatomical specificity. We show that FEF activation leads to cyclic modulation of visual perception and extrastriate but not primary visual cortex excitability, again at beta frequency. We conclude that top-down signals originating in FEF causally shape visual cortex activity and perception through mechanisms of oscillatory realignment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chloé Stengel ◽  
Marine Vernet ◽  
Julià L. Amengual ◽  
Antoni Valero-Cabré

AbstractCorrelational evidence in non-human primates has reported increases of fronto-parietal high-beta (22–30 Hz) synchrony during the top-down allocation of visuo-spatial attention. But may inter-regional synchronization at this specific frequency band provide a causal mechanism by which top-down attentional processes facilitate conscious visual perception? To address this question, we analyzed electroencephalographic (EEG) signals from a group of healthy participants who performed a conscious visual detection task while we delivered brief (4 pulses) rhythmic (30 Hz) or random bursts of Transcranial Magnetic Stimulation (TMS) to the right Frontal Eye Field (FEF) prior to the onset of a lateralized target. We report increases of inter-regional synchronization in the high-beta band (25–35 Hz) between the electrode closest to the stimulated region (the right FEF) and right parietal EEG leads, and increases of local inter-trial coherence within the same frequency band over bilateral parietal EEG contacts, both driven by rhythmic but not random TMS patterns. Such increases were accompained by improvements of conscious visual sensitivity for left visual targets in the rhythmic but not the random TMS condition. These outcomes suggest that high-beta inter-regional synchrony can be modulated non-invasively and that high-beta oscillatory activity across the right dorsal fronto-parietal network may contribute to the facilitation of conscious visual perception. Our work supports future applications of non-invasive brain stimulation to restore impaired visually-guided behaviors by operating on top-down attentional modulatory mechanisms.


2001 ◽  
Vol 39 (2-3) ◽  
pp. 137-150 ◽  
Author(s):  
S Karakaş ◽  
C Başar-Eroğlu ◽  
Ç Özesmi ◽  
H Kafadar ◽  
Ö.Ü Erzengin
Keyword(s):  
Top Down ◽  

2013 ◽  
Vol 310 ◽  
pp. 660-664 ◽  
Author(s):  
Zi Guang Li ◽  
Guo Zhong Liu

As an emerging technology, brain-computer interface (BCI) bring us a novel communication channel which translate brain activities into command signals for devices like computer, prosthesis, robots, and so forth. The aim of the brain-computer interface research is to improve the quality life of patients who are suffering from server neuromuscular disease. This paper focus on analyzing the different characteristics of the brainwaves when a subject responses “yes” or “no” to auditory stimulation questions. The experiment using auditory stimuli of form of asking questions is adopted. The extraction of the feature adopted the method of common spatial patterns(CSP) and the classification used support vector machine (SVM) . The classification accuracy of "yes" and "no" answers achieves 80.2%. The experiment result shows the feasibility and effectiveness of this solution and provides a basis for advanced research .


2021 ◽  
Vol 11 (6) ◽  
pp. 81
Author(s):  
Per Olav Folgerø ◽  
Christer Johansson ◽  
Linn Heidi Stokkedal

Cave Art in the Upper Paleolithic presents a boost of creativity and visual thinking. What can explain these savant-like paintings? The normal brain function in modern man rarely supports the creation of highly detailed paintings, particularly the convincing representation of animal movement, without extensive training and access to modern technology. Differences in neuro-signaling and brain anatomy between modern and archaic Homo sapiens could also cause differences in perception. The brain of archaic Homo sapiens could perceive raw detailed information without using pre-established top-down concepts, as opposed to the common understanding of the normal modern non-savant brain driven by top-down control. Some ancient genes preserved in modern humans may be expressed in rare disorders. Researchers have compared Cave Art with art made by people with autism spectrum disorder. We propose that archaic primary consciousness, as opposed to modern secondary consciousness, included a savant-like perception with a superior richness of details compared to modern man. Modern people with high frequencies of Neanderthal genes, have notable anatomical features such as increased skull width in the occipital and parietal visual areas. We hypothesize that the anatomical differences are functional and may allow a different path to visual perception.


2021 ◽  
Author(s):  
Hugh McGovern ◽  
Marte Otten

Bayesian processing has become a popular framework by which to understand cognitive processes. However, relatively little has been done to understand how Bayesian processing in the brain can be applied to understanding intergroup cognition. We assess how categorization and evaluation processes unfold based on priors about the ethnic outgroup being perceived. We then consider how the precision of prior knowledge about groups differentially influence perception depending on how the information about that group was learned affects the way in which it is recalled. Finally, we evaluate the mechanisms of how humans learn information about other ethnic groups and assess how the method of learning influences future intergroup perception. We suggest that a predictive processing framework for assessing prejudice could help accounting for seemingly disparate findings on intergroup bias from social neuroscience, social psychology, and evolutionary psychology. Such an integration has important implications for future research on prejudice at the interpersonal, intergroup, and societal levels.


Sign in / Sign up

Export Citation Format

Share Document