scholarly journals Diversity and antagonistic activity of endophytic fungi from sweet cherry and pepper

2015 ◽  
Author(s):  
Neda Haddadderafshi
2015 ◽  
Vol 67 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Sobhy I. I. Abdel-Hafez ◽  
Kamal A. M. Abo-Elyousr ◽  
Ismail R. Abdel-Rahim

2016 ◽  
Vol 67 (3) ◽  
pp. 269-285 ◽  
Author(s):  
Neda Haddadderafshi ◽  
Tímea Borbála Pósa ◽  
Gábor Péter ◽  
László Gáspár ◽  
Márta Ladányi ◽  
...  

2017 ◽  
Vol 18 (4) ◽  
pp. 1377-1384
Author(s):  
FAJAR RAHMAH NURAINI ◽  
RATNA SETYANINGSIH ◽  
ARI SUSILOWATI

Nuraini FR, Setyaningsih R, Susilowati A. 2017. Screening and characterization of endophytic fungi as antagonistic agents toward Fusarium oxysporum on eggplant (Solanum melongena). Biodiversitas 18: 1377-1384. Fusarium oxysporum is a soil borne pathogenic fungus that causes wilt disease in members of the family Solanaceae including the eggplant (Solanum melongena L.). One approach to resolving the problem of wilt disease in eggplant is to find endophytic microbes with antagonistic activity against F. oxysporum. The study reported here aimed to isolate such endophytic fungal antagonists from growing eggplants, to determine their antagonistic mechanisms, and to identify them. Samples of pathogenic fungi from diseased plants, assumed to be F. oxysporum, were obtained from the Laboratory of Plant Pests and Diseases of the Faculty of Agriculture, Universitas Sebelas Maret Surakarta. These were used to evaluate the antagonistic potential of endophytic fungi obtained from healthy eggplants in Dawung Village, Matesih, Karanganyar, Central Java. Specimens of various plant parts were collected from the healthy eggplants. The surfaces of these samples were sterilized for four minutes to remove contaminants, and then crushed excisions were cultured on a potato dextrose agar (PDA) medium. Antagonistic tests between endophytic and pathogenic fungi used the agar plug diffusion technique. Identification of fungi isolates was carried out on the basis of morphological characteristics. Six endophytic fungi isolated had antagonist activity against F. oxysporum. The antagonistic mechanism of FEB1, FEB2, FEB5 and FED1 was competition; FED2 was antibiosis, and FED3 was parasitism. Based on their morphological characteristics, FEB2, FEB5 and FED3 were identified as Helicomyces spp.; FEB1 was a Rhizopus sp.; FED1 was a Mucor sp.; and FED2 was a species of Penicillium.


2021 ◽  
Vol 13 (2) ◽  
pp. 10953
Author(s):  
Nehru LAVANYA ◽  
Vellingiri MANON MANI ◽  
Nachimuthu SARANYA ◽  
Rajendran DEEPAKKUMAR ◽  
Kathirvel PREETHI

Medicinal plants are a wealthy source of natural medicinal properties and remain as base for new drug discoveries. Endophyte from the specific medicinal plants produce the analogous metabolites as that of the host plant. The metabolites from the endophytes comprise maximum therapeutic properties and have been extensively applied in treating various diseases and disorders. This study was focused on identification of the endophytic fungi from the medicinal plant Blumea axillaris and investigates the diversity of endophytic fungi from various explants of the same plant. The explants were cultured on potato dextrose agar and 6 endophytic fungi were successfully isolated from Blumea axillaris. They were identified morphologically and confirmed with molecular analysis as Xylaria arbuscula, Paraphoma radicina, Phomopsis phaseoli, Sordaria fimicola, Aspergillus amstelodami, Diaporthe eucalyptorum. The DNA sequences were analyzed by BLAST and the phylogenetic tree was constructed with neighbor joining method. The six isolates were subjected to antagonistic activity for the selection of potential strain and the bioactive strain Xylaria arbuscula was selected for the production of secondary metabolites by optimization. The parameters like pH, temperature, incubation period, carbon and nitrogen (organic and inorganic source) were optimized for secondary metabolite production. The fungal metabolite was extracted by solvent extraction method using polar and non-polar solvents like propanol, methanol, chloroform, acetone and ethyl acetate. To investigate the bioactivities of the fungal crude extract was subjected first for its antioxidant activity using DPPH radical scavenging method, followed by antimicrobial activity of methanolic (MeOH) extract of Xylaria arbuscula, that were also analyzed by the agar well-diffusion method against the clinical pathogens Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pnuemoniae, Proteus mirabilis, Aspergillus niger and Candida albicans.


2020 ◽  
Vol 27 (3) ◽  
pp. 209
Author(s):  
Nur Afeeqah Binti Mohamed Zanudin ◽  
Nor'Aishah Hasan ◽  
Patahayah Binti Mansor

The extensive use of synthetic fungicides in controlling plant disease generates detrimental impacts on the environment and human health. In response to this problem, an alternative method was developed, known as biological control using antagonistic microorganisms. Since investigation on fungal endophytes of Garcinia atroviridis is still unclear, it was chosen for the study. The aim of the present work was to evaluate biocontrol potential of endophytic fungi against Colletotrichum gloeosporiodes, a phytopathogen that caused anthracnose disease. A total of 92 endophytic fungi were isolated from different tissue parts of Garcinia atroviridis including leaves, petioles, branches, and fruits. Results demonstrated that, most of endophytic fungal isolates showed some inhibitory action over the growth of C. gloeosporiodes during dual culture growth. Endophyte isolate F14 showed the highest antagonistic activity against Colletotrichum gloeosporiodes with 67.38% percentage inhibition radial growth (PIRG). However, 7 out of 92 isolates showed no inhibitory effect against Colletotrichum gloeosporiodes. In conclusion, endophytic fungi isolated from G. atroviridis indicate the potential as biocontrol agents. It is hoped that the finding of isolated endophytic fungi in this study with antagonistic activity against anthracnose pathogen may be used in biocontrol programmes of plant disease in the region.


2020 ◽  
Vol 69 (3) ◽  
pp. 379-383
Author(s):  
RAHIL SAID AL-BADI ◽  
THAMODINI GAYA KARUNASINGHE ◽  
ABDULLAH MOHAMMED AL-SADI ◽  
ISSA HASHIL AL-MAHMOOLI ◽  
RETHINASAMY VELAZHAHAN

Endophytic fungi viz., Nigrospora sphaerica (E1 and E6), Subramaniula cristata (E7), and Polycephalomyces sinensis (E8 and E10) were isolated from the medicinal plant, Shirazi thyme (Zataria multiflora). In in vitro tests, these endophytes inhibited the mycelial growth of Monosporascus cannonballus, a plant pathogenic fungus. Morphological abnormalities in the hyphae of M. cannonballus at the edge of the inhibition zone in dual cultures with N. sphaerica were observed. The culture filtrates of these endophytes caused leakage of electrolytes from the mycelium of M. cannonballus. To our knowledge, this is the first report on the isolation and characterization of fungal endophytes from Z. multiflora as well as their antifungal effect on M. cannonballus.


2021 ◽  
Vol 15 (1) ◽  
pp. 232-239
Author(s):  
Anisa Lutfia ◽  
Erman Munir ◽  
Yurnaliza Yurnaliza ◽  
Mohammad Basyuni

The emergence of bacterial infections caused by resistant strains poses a threat to the development of new antibiotics. The majority of antibiotics being produced has been accelerated through the finding of newly reported natural products, especially those originated and produced by biological sources. Endophytic fungi residing in medicinal plants may be regarded as potential sources and encourage the exploration of more plant species for their antimicrobial activity. Our current study reports on the assemblage of endophytic fungi that colonize the rhizomes, using Globba patens a representative of Zingiberaceous species from North Sumatra. Twenty-six fungal morphotypes were obtained and differentiated by their morphological features. Each isolate was tested against human pathogenic bacteria namely Staphylococcus aureus ATCC® 29213™, Methicillin-resistant S. aureus (MRSA) ATCC® 43300™, Escherichia coli ATCC® 25922™, and Enteropathogenic E. coli (EPEC) K11 in a dual culture assay. The results revealed that the majority of fungal isolates were strong antagonists against S. aureus and E. coli but not against MRSA and EPEC. Isolate Gp07 was the most potential fungus with a wide range of antibacterial activities and was subjected to further species-level identification based on its morphological characteristics and DNA sequence in the ITS-rDNA region. The isolate Gp07 was identified as Colletotrichum siamense, yet the presence of C. siamense in the rhizome of G. patens is not fully understood while possibly being characterized as the antibiotics-producing agent in the future.


Author(s):  
Eric Ngalani Tchamgoue ◽  
Sandrine Aimée Youte Fanche ◽  
Bruno Lenta Ndjakou ◽  
Florentina Matei ◽  
Maximilienne Ascension Nyegue

Aims: The present study was carried out to determine the diversity of endophytic fungi that colonize the leaves of Psidium guajava, and to evaluate their antagonistic activity against Fusarium oxysporum f.sp. cubense and Mycosphaerella fijiensis which are the two main phytopathogens of banana plants. Place and Duration of Study: The research was carried out at Microbiology Laboratory, Faculty of Sciences, University of Yaoundé I and Microbiology Laboratory, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, between April 2018 and February 2020. Methodology: Fragments of surface sterilized leaves of Psidium guajava were inoculated on Potato Dextrose Agar supplemented with chloramphenicol. The isolated and purified endophytic fungi were identified based on their macroscopic and microscopic characters using a mycological atlas as guide. The non-sporulating isolates were identified by comparing the ITS regions of their DNA to those of known fungi registered in the GenBank database. The antagonistic activity of the endophytic fungi isolated against Fusarium oxysporum and Mycosphaerella fijiensis was screened using dual culture method. Results: A total of 28 endophytic fungal were isolated from the leaves of Psidium guajava corresponding to a colonization frequency of 33.33%. These isolates were identified as: Aspergillus sp., Botryosphaeria sp., Fusarium sp., Neoscytalidium sp., Xylaria sp., Phyllosticta capitalensis, Cercospora apii, Xylaria longipes, Phomopsis sp., Phomopsis asparagi, Aspergillus versicolor, Pallidocercospora thailandica, and Xylaria grammica that belonged to the Deuteromycota and Ascomycota divisions. These endophytic fungi inhibited the growth of Fusarium oxysporum f.sp. cubense and Mycosphaerella fijiensis with the percentage inhibition varying respectively from 23.25% to 73.52% and from 21.36% to 100%. The species Botryosphaeria sp., Phomopsis sp., Phomopsis asparagi, and Xylaria longipes exhibited the greatest activity. Conclusion: The leaves of Psidium guajava have a fairly varied diversity of endophytic fungi. These endophytic fungi can serve as potential biological control agents against Panama and Sigatoka diseases of banana and also would produce secondary metabolites with antifungal properties.


Sign in / Sign up

Export Citation Format

Share Document