scholarly journals Bond strength of resin cements to novel materials to intracanal posts applications

2018 ◽  
Vol 21 (4) ◽  
pp. 445
Author(s):  
Lígia Gabrielle Sanches Mariotto ◽  
Carla Larissa Vidal ◽  
Denise Tornavoi De Castro ◽  
Alma Blásida Concepcion Elizaur Benitez Catirse ◽  
Rossana Pereira De Almeida ◽  
...  

<p><strong>Objective: </strong>evaluate the bond strength of resin cements to new materials for application in intraradicular posts. <strong>Material and Methods: </strong>Five materials were evaluated: fiberglass, PET, polyethylene, polyacetal and PTFE. Two commercial resin cements (Rely X U200 and Rely X Arc) were applied on the test specimens of the materials (9x3mm) and the bonding was evaluated through the shear bond strength test, where the chisel operated with a load of 1kN and a velocity of 0.5mm/min at the cement/material interface. The data were analyzed by the Shapiro-Wilk test, followed by the two-way analysis of variance, performed with the Bonferroni post-test (α=0.05). <strong>Results: </strong>The glass fiber was statistically different from all evaluated materials (p&lt;0.05). There was no statistically significant difference between the other materials (p&gt;0.05). Comparing the two cements, a statistical difference was found between Rely X U200 and Arc only for the glass fiber (p=0). <strong>Conclusion: </strong>PET, polyethylene, polyacetal and PTFE exhibited reduced bond strength compared to the glass fiber.</p><p><strong>Keywords</strong></p><p>Resin cement; PET polymer; Polytetrafluoroethylene.</p>

2019 ◽  
Vol 18 ◽  
pp. e191581
Author(s):  
Fawaz Alqahtani ◽  
Mohammed Alkhurays

Aim: The study aimed to evaluate and compare the effect of different surface treatment and thermocycling on the shear bond strength (SBS) of different dual-/light-cure cements bonding porcelain laminate veneers (PLV). Methods: One hundred and twenty A2 shade lithium disilicate discs were divided into three groups based on the resin cement used and on the pretreatment received and then divided into two subgroups: thermocycling and control. The surface treatment were either micro-etched with aluminium trioxide and 10% hydrofluoric acid or etched with 10% hydrofluoric acid only before cementation. Three dual-cure (Variolink Esthetic (I), RelyX Ultimate (II), and RelyX Unicem (III)) and three light-cure (Variolink Veneer (IV), Variolink Esthetic (V), RelyX Veneer (VI)) resin cements were used for cementation. The SBS of the samples was evaluated and analysed using three -way ANOVA with statistical significant set at α=0.05. Results: For all resin cements tested with different surface treatments, there was a statistically significant difference within resin cements per surface treatment (p<0.05). The shear bond strength in the micro-etch group was significant higher than the acid-etch group (p<0.05) There was statistically significant interaction observed between the surface treatment and thermocycling (p<0.05) as well as the cement and thermocycling(p<0.05). It was observed that the reduction in shear bond strength after thermocycling was more pronounced in the acid etch subgroup as compared to the microetch subgroup. However, the interaction between the three factors: surface treatments, thermocycling and resin cements did not demonstrate statistically significant differences between and within groups (p=0.087). Conclusions: Within the limitations of the present study, it acan be concluded that Dual cure resin cements showed a higher Shear bond strength as compared to light cure resin cements. Thermal cycling significantly decreased the shear bond strength for both ceramic surface treatments. After thermocycling, the specimens with 10% HF surface treatment showed lower shear bond strength values when compared to those treated by sandblasting with Al2O3 particles.


2016 ◽  
Vol 95 (13) ◽  
pp. 1487-1493 ◽  
Author(s):  
N. Hirose ◽  
R. Kitagawa ◽  
H. Kitagawa ◽  
H. Maezono ◽  
A. Mine ◽  
...  

An experimental cavity disinfectant (ACC) that is intended to be used for various direct and indirect restorations was prepared by adding an antibacterial monomer 12-methacryloyloxydodecylpyridinum bromide (MDPB) at 5% into 80% ethanol. The antibacterial effectiveness of ACC and its influences on the bonding abilities of resin cements were investigated. To examine the antibacterial activity of unpolymerized MDPB, the minimum inhibitory and bactericidal concentrations (MIC and MBC) were determined for Streptococcus mutans, Lactobacillus casei, Actinomyces naeslundii, Parvimonas micra, Enterococcus faecalis, Fusobacterium nucleatum, and Porphyromonas gingivalis. Antibacterial activities of ACC and the commercial cavity disinfectant containing 2% chlorhexidine and ethanol (CPS) were evaluated by agar disk diffusion tests through 7 bacterial species and by MIC and MBC measurement for S. mutans. The effects of ACC and CPS to kill bacteria in dentinal tubules were compared with an S. mutans–infected dentin model. Shear bond strength tests were used to examine the influences of ACC on the dentin-bonding abilities of a self-adhesive resin cement and a dual-cure resin cement used with a primer. Unpolymerized MDPB showed strong antibacterial activity against 7 oral bacteria. ACC produced inhibition zones against all bacterial species similar to CPS. For ACC and CPS, the MIC value for S. mutans was identical, and the MBC was similar with only a 1-step dilution difference (1:2). Treatment of infected dentin with ACC resulted in significantly greater bactericidal effects than CPS ( P < 0.05, analysis of variance and Tukey’s honest significant difference test). ACC showed no negative influences on the bonding abilities to dentin for both resin cements, while CPS reduced the bond strength of the self-adhesive resin cement ( P < 0.05). This study clarified that the experimental cavity disinfectant containing 5% MDPB is more effective in vitro than the commercially available chlorhexidine solution to eradicate bacteria in dentin, without causing any adverse influences on the bonding abilities of resinous luting cements.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7058
Author(s):  
Akane Chin ◽  
Masaomi Ikeda ◽  
Tomohiro Takagaki ◽  
Toru Nikaido ◽  
Alireza Sadr ◽  
...  

The purpose of this study was to evaluate the effect of one week of Computer-aided design/Computer-aided manufacturing (CAD/CAM) crown storage on the μTBS between resin cement and CAD/CAM resin composite blocks. The micro-tensile bond strength (μTBS) test groups were divided into 4 conditions. There are two types of CAD/CAM resin composite blocks, namely A block and P block (KATANA Avencia Block and KATANA Avencia P Block, Kuraray Noritake Dental, Tokyo, Japan) and two types of resin cements. Additionally, there are two curing methods (light cure and chemical cure) prior to the μTBS test—Immediate: cementation was performed immediately; Delay: cementation was conducted after one week of storage in air under laboratory conditions. The effect of Immediate and Delayed cementations were evaluated by a μTBS test, surface roughness measurements, light intensity measurements, water sorption measurements and Scanning electron microscope/Energy dispersive X-ray spectrometry (SEM/EDS) analysis. From the results of the μTBS test, we found that Delayed cementation showed significantly lower bond strength than that of Immediate cementation for both resin cements and both curing methods using A block. There was no significant difference between the two types of resin cements or two curing methods. Furthermore, water sorption of A block was significantly higher than that of P block. Within the limitations of this study, alumina air abrasion of CAD/CAM resin composite restorations should be performed immediately before bonding at the chairside to minimize the effect of humidity on bonding.


2017 ◽  
Vol 15 (4) ◽  
pp. 258
Author(s):  
Marcelo Giannini ◽  
Andreia Assis Carvalho ◽  
Ariovaldo Stefani ◽  
Wladimir Franco de Sá Barbosa ◽  
Lawrence Gonzaga Lopes

Self-adhesive, dual-polymerizing resin cements require no treatment to the prepared tooth surfaces before cementation. Aim: The aim of this study was to evaluate the influence of curing mode on bond strength (BS) of three cementing systems to bovine dentin. Methods: The buccal enamel surfaces of 50 bovine incisors were removed to expose dentin and to flat the surface. The teeth were divided into five groups (n=10), which consisted of two resin cements (Multilink and Clearfil SA Cement) that were tested in dual- (halogen light for 40 s) and self-cured modes, and a control (RelyX ARC). Two cylinders of resin cements (1.0 mm X 0.75 mm) were prepared on each bonded dentin surface. After 24h at 37oC, resin cylinders were subjected to micro-shear testing in a universal testing machine (4411/Instron - 0.5 mm/min). Data were statistically analyzed by two-way ANOVA, Tukey and Dunnett`s test (5%). Results: Multilink showed higher BS than those observed on Clearfil SA. Light-curing resulted in higher BS for both Multilink and Clearfil SA. When Multilink was light-cured, no significant difference on BS was demonstrated between it and RelyX ARC. Conclusions: The highest BS values were obtained in control group and light-cured Multilink resin cement.


2019 ◽  
Vol 30 (4) ◽  
pp. 350-355 ◽  
Author(s):  
Thiago Lopes de Freitas ◽  
Rafael Pino Vitti ◽  
Milton Edson Miranda ◽  
William Cunha Brandt

Abstract The aim of this study was to evaluate the effect of different glass fiber posts (GFPs) diameters on the push-out bond strength to dentin. Forty unirradicular human teeth were endodontically treated and used for cementation of GFPs (White Post DC, FGM) with different diameters (n=10): P1 - ø 1.6 mm coronal x 0.85 mm apical; P2 - ø 1.8 mm coronal x 1.05 mm apical; P5 - ø 1.4 mm coronal x 0.65 mm apical; and PC - customized post number 0.5 with composite resin (Tetric Ceram A2, Ivoclair Vivadent). All GFPs were cemented into the root canal using a dual-curing luting composite (Variolink II, Ivoclar Vivadent). One slice (1.7 mm) of each root third of cemented GFP (cervical, middle, and apical) was submitted to push-out testing. Failure modes of all specimens were classified as: adhesive failure between resin cement and post; adhesive failure between dentin and resin cement; cohesive failure within resin cement, post or dentin; and mixed failure. The data were analyzed with two-way ANOVA and Tukey’s test (a=0.05). The highest bond strength values were presented for the P2 and PC groups. There was no statistically significant difference between the GFP thirds in each group. The groups P2, P5, and PC showed predominantly adhesive failure. For P1, the most prevalent type of failure was adhesive between resin cement and post. It may be concluded that a glass fiber post that is well adapted to the root canal presents higher bond strength values, regardless of GFP third.


2018 ◽  
Vol 6 (3) ◽  
pp. 548-553 ◽  
Author(s):  
Bandar M. A. Al–Makramani ◽  
Abdul A. A. Razak ◽  
Mohamed I. Abu–Hassan ◽  
Fuad A. Al–Sanabani ◽  
Fahad M. Albakri

BACKGROUND: The selection of the appropriate luting cement is a key factor for achieving a strong bond between prepared teeth and dental restorations.AIM: To evaluate the shear bond strength of Zinc phosphate cement Elite, glass ionomer cement Fuji I, resin-modified glass ionomer cement Fuji Plus and resin luting cement Panavia-F to Turkom-Cera all-ceramic material.MATERIALS AND METHODS: Turkom-Cera was used to form discs 10mm in diameter and 3 mm in thickness (n = 40). The ceramic discs were wet ground, air - particle abraded with 50 - μm aluminium oxide particles and randomly divided into four groups (n = 10). The luting cement was bonded to Turkom-Cera discs as per manufacturer instructions. The shear bond strengths were determined using the universal testing machine at a crosshead speed of 0.5 mm/min. The data were analysed using the tests One Way ANOVA, the nonparametric Kruskal - Wallis test and Mann - Whitney Post hoc test.RESULTS: The shear bond strength of the Elite, Fuji I, Fuji Plus and Panavia F groups were: 0.92 ± 0.42, 2.04 ± 0.78, 4.37 ± 1.18, and 16.42 ± 3.38 MPa, respectively. There was the statistically significant difference between the four luting cement tested (p < 0.05).CONCLUSION: the phosphate-containing resin cement Panavia-F exhibited shear bond strength value significantly higher than all materials tested.


2015 ◽  
Vol 1 (1) ◽  
pp. 53
Author(s):  
Dian Noviyanti Agus Imam ◽  
Siti Sunarintyas ◽  
Nuryono Nuryono

Retainer dibutuhkan untuk membantu menstabilkan posisi gigi geligi selama proses reorganisasi jaringan periodontal berlangsung. Retainer FRC ortodonsi dikembangkan sebagai alternatif material estetika serta aman bagi pasien alergi terhadap nikel. E-glass fiber lebih sering digunakan sebagai retainer ortodonsi. Penelitian ini bertujuan untuk mengkaji pengaruh komposisi glass fiber non dental dan penambahan silane terhadap kekuatan geser FRC sebagai retainer ortodonsi. Subjek penelitian terdiri dari 9 kelompok perlakuan dengan 3 jenis glass fiber yang berbeda yaitu glass fiber non dental A (LT, Cina), B (CMAX, Cina) dan C (HJ, Cina). Masing-masing glass fiber diberi perlakuan yang bervariasi yaitu tanpa penambahan silane, penambahan silane 1x dan 2x. Subjek penelitian direndam dalam akuades dan disimpan pada suhu 37ºC selama 24 jam sebelum dilakukan uji kekuatan geser dengan menggunakan alat Universal Testing Machine. Hasil penelitian dianalisis variansi dua jalur dan post hoc Tukey untuk mengetahui perbedaan statistik masing-masing kelompok. Hasil penelitian menunjukkan bahwa glass fiber non dental A dengan penambahan 2x silane memiliki rerata kekuatan geser tertinggi (12,72±2,02 MPa) sedangkan glass fiber non dental B tanpa penambahan silane memiliki rerata kekuatan geser terendah (6,96±1,69 MPa). Terdapat perbedaan bermakna antara komposisi fiber maupun penambahan silane terhadap kekuatan geser FRC (p<0,05). Tidak terdapat perbedaan bermakna pada letak kegagalan FRC (p>0,05). Berdasarkan hasil penelitian dapat disimpulkan bahwa komposisi SiO2 dan Al2O3 yang tinggi pada glass fiber non dental serta penambahan silane dapat meningkatkan kekuatan geser FRC. The Effect of Non Dental Glass Fiber Composition and Silane Addition on The Shear Bond Strength of Fiber Reinforced Composite as An Orthodontic Retainer. Retainers are required to stabilize the position of the teeth to permit reorganization of periodontal tissue. FRC orthodontic retainer was developed as an alternative material aesthetic and safe for nickel allergic patients. E-glass fiber is commonly used as an orthodontic retainer. The purpose of this study was to assess the effect of non dental glass fiber composition and silanes addition on the shear bond strength of the FRC as an orthodontic retainer. This study consisted of 9 treatment groups with three different types of non dental glass fiber, namely non dental glass fiber A (LT, China), B (CMAX, China) and C (HJ, China). Each glass fiber was given a variation treatment, without silanes, one time and two times of silanes addition. All the samples were stored in distilled water at 37ºC for 24 hours and subsequently tested for shear strength by using Universal Testing Machine.The groups were submitted to two way ANOVA analysis of variance with Tukey post test to verify the statictical difference between groups. The results showed that a non dental glass fiber A with two times of silanes addition has the highest shear bond strength (12,72±2,02 MPa), meanwhile a non dental glass fiber B without silane addition has the lowest shear bond strength (6,96±1,69 MPa). There were significant differences between the composition of glass fiber and the addition of silane toward the shear bond strength of FRC (p<0,05). No significant differences in debonded locations of FRC (p>0,05). Based on the results of this study concluded that the composition of the high SiO2 and Al2O3 in the non dental glass fiber  and the silanes addition can increase the shear bond strength FRC.


2013 ◽  
Vol 14 (4) ◽  
pp. 675-680
Author(s):  
Khalil Aleisa

ABSTRACT Statement of the problem Post retention is crucial factor in restoration survival. Posts are commonly failed due to loss of retention. It is unknown which luting agents would provide the maximum bond strength for Locator overdenture posts. Aim The aim of this study was to evaluate the bond retentive strengths of Locator overdenture posts cemented with 7 luting agents. Materials and methods One hundred and five single rooted human teeth were decoronated and randomly assigned to 7 groups (n = 15). Post spaces were prepared with Locator post drills to the depth of 6 mm. The Locator posts were cemented with Variolink II, RelyX ARC, Multilink N, RelyX Unicem, ParaCore, or MultiCore Flow resin luting agents. Zinc phosphate cement was served as control group. Specimens were stored in water at 37°C for 24 hours. Each specimen was loaded in tension in an Instron universal testing machine. The maximum force required to dislodge each Locator post was recorded. Means and standard deviations were calculated and data were statistically analyzed with one-way analysis of variance (ANOVA). Results The highest mean bond strength value for Locator posts was recorded for MultiCore® Flow group (mean = 550.1 N), while the lowest mean value was for RelyX Unicem™ resin cement group (mean = 216.8 N). A statistically significant difference in mean locator overdenture post bond strength was observed between the 7 cement types (p < 0.0001). ParaCore™ and MultiCore® Flow groups had significantly higher bond strength than all other groups, but they were not differed from each other. Conclusion Bond strength of Locator overdenture posts were influenced by the type of luting agents. MultiCore Flow and ParaCore resin cements offered the greatest retention. Clinical significance The type of luting agents had a significant effect on the retention of Locator posts. The use of Core buildup resin cements as luting agent with Locator post demonstrated the greatest retention. How to cite this article Aleisa K. Bond Strength of Overdenture Locator Posts Cemented with Seven Luting Agents. J Contemp Dent Pract 2013;14(4):675-680.


2017 ◽  
Vol 16 ◽  
pp. 1-7
Author(s):  
Bruna Genari ◽  
Vicente Castelo Branco Leitune ◽  
João Henrique Macedo Saucedo ◽  
Susana Maria Werner Samuel ◽  
Fabrício Mezzomo Collares

Self-adhesive, dual-polymerizing resin cements require no treatment to the prepared tooth surfaces before cementation. Aim: The aim of this study was to evaluate the influence of curing mode on bond strength (BS) of three cementing systems to bovine dentin. Methods: The buccal enamel surfaces of 50 bovine incisors were removed to expose dentin and to flat the surface. The teeth were divided into five groups (n=10), which consisted of two resin cements (Multilink and Clearfil SA Cement) that were tested in dual- (halogen light for 40 s) and self-cured modes, and a control (RelyX ARC). Two cylinders of resin cements (1.0 mm X 0.75 mm) were prepared on each bonded dentin surface. After 24h at 37oC, resin cylinders were subjected to micro-shear testing in a universal testing machine (4411/Instron - 0.5 mm/min). Data were statistically analyzed by two-way ANOVA, Tukey and Dunnett`s test (5%). Results: Multilink showed higher BS than those observed on Clearfil SA. Light-curing resulted in higher BS for both Multilink and Clearfil SA. When Multilink was light-cured, no significant difference on BS was demonstrated between it and RelyX ARC. Conclusions: The highest BS values were obtained in control group and light-cured Multilink resin cement.


Sign in / Sign up

Export Citation Format

Share Document