scholarly journals Photodynamic inactivation of planktonic cultures of Streptococcus mutans using erythrosine irradiated by LED

2020 ◽  
Vol 23 (2) ◽  
Author(s):  
Maria Ângela Lacerda Rangel Esper ◽  
Junia Oliveira Barbosa ◽  
Janaína De Araújo Alvarenga ◽  
Juliana Campos Junqueira ◽  
Alessandra nara De Souza Rastelli ◽  
...  

Objective: The aim of this in vitro study was to evaluate the efficacy of photodynamic inactivation (PDI) with erythrosine (E), using a light-emitting diode (LED) on planktonic cultures of Streptococcus mutans. Material and Methods: A Streptococcus mutans strain (UA 159) was used to prepare the suspensions containing 107 cells/mL, which was tested under different experimental conditions: a) LED irradiation in the presence of erythrosine as a photosensitizer (E+L+); b) LED irradiation only (P-L+); c) treatment with erythrosine only (E+L-); and d) no LED irradiation or photosensitizer (P) treatment, which served as a control group (P-L-). After treatment, strains were seeded onto MSBS agar for determination of the number of colony-forming units (CFU/mL). Results: The results were submitted to analysis of variance and the Tukey test (p < 0.05). No reduction in the number of CFU/mL was observed in the treatment group with erythrosine (E+L+) when compared to the control (P-L-). Conclusion: PDI using erythrosine did not reduce the number of CFUs per millimeter within the parameters in this study.KEYWORDSErythrosine; Decay; Photodynamic inactivation; Light-emitting diode.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1176
Author(s):  
Vanesa Pérez-Laguna ◽  
Yolanda Barrena-López ◽  
Yolanda Gilaberte ◽  
Antonio Rezusta

Candidiasis is very common and complicated to treat in some cases due to increased resistance to antifungals. Antimicrobial photodynamic therapy (aPDT) is a promising alternative treatment. It is based on the principle that light of a specific wavelength activates a photosensitizer molecule resulting in the generation of reactive oxygen species that are able to kill pathogens. The aim here is the in vitro photoinactivation of three strains of Candida spp., Candida albicans ATCC 10231, Candida parapsilosis ATCC 22019 and Candida krusei ATCC 6258, using aPDT with different sources of irradiation and the photosensitizer methylene blue (MB), alone or in combination with chlorhexidine (CHX). Irradiation was carried out at a fluence of 18 J/cm2 with a light-emitting diode (LED) lamp emitting in red (625 nm) or a white metal halide lamp (WMH) that emits at broad-spectrum white light (420–700 nm). After the photodynamic treatment, the antimicrobial effect is evaluated by counting colony forming units (CFU). MB-aPDT produces a 6 log10 reduction in the number of CFU/100 μL of Candida spp., and the combination with CHX enhances the effect of photoinactivation (effect achieved with lower concentration of MB). Both lamps have similar efficiencies, but the WMH lamp is slightly more efficient. This work opens the doors to a possible clinical application of the combination for resistant or persistent forms of Candida infections.


2005 ◽  
Vol 19 (2) ◽  
pp. 134-138 ◽  
Author(s):  
Anna Carolina Aguiar Cassanho ◽  
Aletéia Massula Fernandes ◽  
Luciane Dias de Oliveira ◽  
Claudio Antonio Talge Carvalho ◽  
Antonio Olavo Cardoso Jorge ◽  
...  

The aim of this study was to evaluate in vitro the antimicrobial activity of glass ionomer (GIC) and zinc oxide-eugenol (ZOE) cements against Candida albicans. Standardized GIC and ZOE specimens were maintained in contact with C. albicans suspension (1 <FONT FACE=Symbol>´</FONT> 10(6) cells/ml) at 37°C for 24 h, 48 h or 7 days. A control group without any testing cement was included. After the incubation period, aliquots of 0.1 ml were plated on Sabouraud's agar, and then the number of colonies was counted. The results were expressed as values of logarithms of colony-forming units per milliliter (log CFU/mL) and were analyzed statistically by Kruskal-Wallis ANOVA. After 48 h of incubation, the ZOE group presented no growth of C. albicans. GIC and control groups presented similar mean values at all tested periods. According to the results obtained, it could be concluded that, under the experimental conditions, ZOE cement was more effective in vitro against C. albicans than GIC.


2020 ◽  
Vol 23 (4) ◽  
pp. 9p
Author(s):  
Nuri Mert Topbasi ◽  
Yasin Atakan Benkli

Objective: This study evaluates the shear bond strength (SBS) and Vickers micro-hardness (VHN) of the orthodontic adhesive resin Transbond XT using thermocycled samples. The study also measures the degree of cure by poliwave light curing unit Valo. Materials and Methods: 135 brackets were bonded for the SBS test, and 90 disc-shaped orthodontic adhesive resins were prepared for the VHN test. The measurements were taken either immediately or after 500 or 10.0000 thermocycling. The SBS and VHN test data were statistically evaluated using a Two-way ANOVA and Tukey multiple comparison tests. The degree of conversion (DC) was measured by FTIR. Results: The 10-sec polymerized control group (57.08) and the 10.000 termocycled samples (55.96) had the highest VHN scores. On the other hand, the 3 second polymerized and the 10.000 termocycled samples (39.22) had the lowest VHN scores. There was no significant difference in the bracket SBS values between the termocycled and immediate groups. An evaluation of the bond failure surfaces revealed that the ARI scores did not differ between the immediate and the thermo-cycled groups according to the power modes. The FTIR results revealed that the lowest DC was seen in the 3 second light-cured sample. Conclusion: Transbond XT provided sufficient bonding in terms of microhardness and DC under in vitro bracket bonding conditions after 10 and 8 seconds of Poliwave LED curing. However, low mean values were seen in the groups that received Poliwave LED curing for only 3 seconds. KEYWORDSARI score; FTIR; Light-Emitting Diode; Orthodontics; Thermocycling.


Author(s):  
Krishnakanth Jaju ◽  
Iffat Nasim

Streptococcus mutans (S. mutans) is one of the cariogenic microorganisms. The restorative materials which harbor a biofilm with high number of S. mutans can accelerate the occurrence of dental caries. The purpose of this study was to evaluate the adherence of S. mutans to nanoceramic and nanohybrid resin composites. Fifteen discs of each material (Nanohybrid resin composite, Nanoceramic resin composite) were prepared, polished, and sterilized in a gamma radiation chamber. Specimens were exposed to the S. mutans bacterial suspension (0.5 McFarland) and were incubated for 4 hours. Specimens were rinsed and sonicated in normal saline, 10 μl of the obtained suspension was cultured in a sterile blood agar medium. After 24 hours, the number of colony forming units of S. mutans was counted. A sterility test control was considered for each group of materials. The data was analyzed by Independent t test. The means and standard deviations of the logarithmic counts of the colonies on the surfaces of nanohybrid resin composites and nanoceramic resin composite were equal to 3.2±0.87 and 2.8±0.324 respectively. Ceram X Universal did not show any significant difference in the bacterial adhesion compared to Filtek Z350XT. Both composites showed similar behaviour in terms of S. mutans colonization in a simple biofilm formation model.


2018 ◽  
Vol 6 (02/03) ◽  
pp. 060-064
Author(s):  
R. Bansal ◽  
M. Bansal ◽  
S. Walia ◽  
C. Gupta ◽  
L. Bansal ◽  
...  

Abstract Objective To assess the adequacy of various light-curing units to polymerize the posterior composite resin. Materials and Methods Specimens were prepared by placing a single increment of posterior composite resin in split cylindrical metallic mold of dimension (6.0 mm in diameter and 5 mm in depth). Polymerization was done by utilizing one quartz-tungsten-halogen and three light-emitting diode light-curing units of different powers. The specimens of composite resin were then mounted on metallic molds utilizing autopolymerizing acrylic resin. After polishing, the complete setting of composite resin material was analyzed using Vickers hardness test. Results Showed in each group, hardness reduced as we moved from upper to lower surface of composite resin. Furthermore, hardness increased as intensity of light was increased. The maximum hardness was detected when light-emitting diode light-curing unit having intensity of 1,250 mW/cm2 was utilized and least hardness was detected when halogen lamp having intensity 418 mW/cm2 was utilized and results were found to be highly significant (p < 0.01). Conclusion It was concluded that increased top and bottom hardness can be accomplished by utilizing the light-curing unit of high intensity.


2016 ◽  
Vol 10 (02) ◽  
pp. 203-209
Author(s):  
Fatemeh Mazhari ◽  
Behjatolmolok Ajami ◽  
Saied Mostafa Moazzami ◽  
Bahareh Baghaee ◽  
Bahareh Hafez

ABSTRACT Objective: The aim of this study was to evaluate the effect of increased exposure time and light intensity on microhardness of cured composite through different thicknesses of tooth structure in primary teeth. Materials and Methods: One hundred and seventy cylindrical resin composite specimens were prepared. All specimens were divided into 17 experimental and control groups. “Light-emitting diode” light curing unit (LCU) applied directly or through 1, 2, and 3 mm thicknesses tooth slices for experimental groups. The irradiation protocols were 25 and 50 s at 650 mW/cm2 and 15 and 30 s at 1100 mW/cm2. The “quartz-tungsten-halogen” LCU (400 mW/cm2) for 40 s was used in control group. Microhardness was measured by the Vickers hardness test. Results: Indirectly cured specimens and those cured through a 1 mm thick tooth structure, an increase in intensity caused hardness drop. In the specimens cured through 2 and 3 mm thick tooth structures, increased intensity and/or exposure time did not show any appropriate changes on microhardness. Conclusion: Irradiation through a 1.0 mm thick tooth slice resulted in reduced microhardness although it was still within the clinically acceptable level. The hardness values of the specimens cured through 2 or 3 mm thick tooth slices fell below the clinically acceptable level even after doubling the exposure time and/or light intensity.


Sign in / Sign up

Export Citation Format

Share Document