scholarly journals THE INFLUENCE OF FRICTION STIR WELDED PROCESS PARAMETERS OF AA2519-T62 ON JOINT QUALITY DEFINED BY NON-DESTRUCTIVE LASER AMPLIFIED ULTRASONIC METHOD AND BY MICROSTRUCTURE ANALYSIS

2020 ◽  
Vol 60 (5) ◽  
pp. 415-419
Author(s):  
Alexander Kravcov ◽  
Robert Kosturek ◽  
Lucjan Śnieżek ◽  
Janusz Kluczyński ◽  
Ondřej Franek ◽  
...  

The presented research contains a description of a non-destructive laser ultrasound internal structure analysis of aluminium joints made by friction stir welding. In the research, four selected technological parameter groups were taken into account. Modifications used in different parameter groups included changing tool traverse speeds and also its rotation speeds. The most important goal of this research was to determine the joint quality using a non-destructive laser amplified ultrasound method  To verify obtained test results, an additional microstructural analysis was also conducted.

2015 ◽  
Vol 60 (3) ◽  
pp. 2297-2306 ◽  
Author(s):  
P. Lacki ◽  
W. Więckowski ◽  
P. Wieczorek

Abstract FSW (Friction Stir Welding) and RFSSW (Refill Friction Stir Spot Welding) joints have been increasingly used in industrial practice. They successfully replace fusion-welded, riveted or resistance-welded joints. In the last two decades, dynamic development of this method has stimulated investigations of the fast methods for joint diagnostics. These methods should be non-destructive and easy to be used in technological processes. The methods of assessment of joint quality are expected to detect discontinuities in the structures welded using FSW and FSSW methods. Reliable detection of flaws would substantially extend the range of applications of FSW joints across many sectors of industry, including aviation. The investigations carried out in this paper allowed for characterization of defects present in FSW and RFSSW joints. Causes of these defects were also stressed. An overview of the methodologies for assessment of joint quality was presented. Results of assessment of the quality of joints made of 2024T6 aluminium sheet metal using FSW and RFSSW method were presented.


2021 ◽  
Vol 13 (10) ◽  
pp. 168781402110507
Author(s):  
Gajula Sri Venkata Seshu Kumar ◽  
Anshuman Kumar ◽  
S Rajesh ◽  
Rama Bhadri Raju Chekuri ◽  
Venkatesa Prabhu Sundaramurthy

Friction stir welding is an environmentally friendly process of joining due to the non-usage of flux, or any shield gas. Therefore, this article proposes an experimental and thermal investigation with optimization technique for studying the process of FSW on nylon 6A or polycaprolactam polymer composite plates. Specifically, the influence of input operating process parameters such as tool rotational speed (TRS), feed rate, and pitch values on the output response parameters like ultimate tensile strength (UTS), and hardness of welded joints is examined. In addition, L27 orthogonal array of Taguchi approach is employed for the optimization of design experiments of FSW parameters. The experimental setup is carried out with various process parameter combinations like 500, 1000, and 1500 rpm as TRS, 30, 40, and 50 mm as feed rate by varying the pitch values as 1, 2, and 3 mm. Further, the analysis of variance (ANOVA) also employed for finding the significant parameters of input process using the regression analysis equations. Finally, microstructural analysis is used to assess the mixing or dispersing uniformity of composites effectively. The experimental and optimum FSW parameters for maximum UTS are obtained at a feed rate of 30 mm/min, tool pitch of 3 mm, and the TRS of 500 rpm.


2018 ◽  
Vol 762 ◽  
pp. 339-342
Author(s):  
Ho Sung Lee ◽  
Koo Kil No ◽  
Joon Tae Yoo ◽  
Jong Hoon Yoon

The object of this study was to study mechanical properties of friction stir welded joints of AA2219 and AA2195. AA2219 has been used as an aerospace materials for many years primarily due to its high weldability and high specific strength in addition to the excellent cryogenic property so to be successfully used for manufacturing of cryogenic fuel tank for space launcher. Relatively new Aluminum-Lithium alloy, AA2195 provides significant saving on weight and manufacturing cost with application of friction stir welding. Friction stir welding is a solid-state joining process, which use a spinning tool to produce frictional heat in the work piece. To investigate the effect of the rotation direction of the tool, the joining was performed by switching the positions of the two dissimilar alloys. The welding parameters include the travelling speed, rotation speed and rotation direction of the tool, and the experiment was conducted under the condition that the travelling speed of the tool was 120-300 mm/min and the rotation speed of the tool was 400-800 rpm. Tensile tests were conducted to study the strength of friction stir welded joints and microhardness were measured with microstructural analysis. The results indicate the failure occurred in the relatively weaker TMAZ/HAZ interface of AA2219. The optimum process condition was obtained at the rotation speed of 600-800 rpm and the travelling speed of 180-240 mm/min.


Author(s):  
Mohd Ridha Muhamad ◽  
Sufian Raja ◽  
Mohd Fadzil Jamaludin ◽  
Farazila Yusof ◽  
Yoshiaki Morisada ◽  
...  

Abstract Dissimilar materials joining between AZ31 magnesium alloy and SPHC mild steel with Al-Mg powder additives were successfully produced by friction stir welding process. Al-Mg powder additives were set in a gap between AZ31 and SPHC specimen's butt prior to welding. The experiments were performed for different weight percentages of Al-Mg powder additives at welding speeds of 25 mm/min, 50 mm/min and 100 mm/min with a constant tool rotational speed of 500 rpm. The effect of powder additives and welding speed on tensile strength, microhardness, characterization across welding interface and fracture morphology were investigated. Tensile test results showed significant enhancement of tensile strength of 150 MPa for 10% Al and Mg (balance) powder additives welded joint as compared to the tensile strength of 125 MPa obtained for welded joint without powder additives. The loss of aluminium in the alloy is compensated by Al-Mg powder addition during welding under a suitable heat input condition identified by varying welding speeds. Microstructural analysis revealed that the Al-Mg powder was well mixed and dispersed at the interface of the joint at a welding speed of 50 mm/min. Intermetallic compound detected in the welding interface contributed to the welding strength.


2021 ◽  
Vol 63 (9) ◽  
pp. 829-835
Author(s):  
Sare Çelik ◽  
Fatmagül Tolun

Abstract AA5754Al alloy is widely used in industry. However, as in the case of all Al alloys, the 5xxx series Al alloys cannot be easily joined through fusion welding techniques. To address this problem, in this study, the effect of double-sided friction stir welding at various tool rotational speeds (450, 710, and 900 rpm), feeding rates (40, 50, and 80 mm × min-1), and tool tilt angles (0°, 1°, 2°) on the welding parameters and mechanical and microstructural characteristics of AA5754 Al alloy was determined. Tensile strength tests and microhardness tests were performed to examine the mechanical properties of the welded specimens. The microstructures of the welded zone were examined by obtaining optical microscopy and scanning electron microscopy images. The tensile test results indicated that the specimens exhibited the highest welding performance of 95.17 % at a tool rotational speed, feed rate, and tool tilt angle of 450 rpm, 50 mm × min-1 and 1°, respectively.


2021 ◽  
Vol 35 ◽  
pp. 502-516
Author(s):  
Suryakanta Sahu ◽  
Omkar Mypati ◽  
Surjya K. Pal ◽  
Mahadev Shome ◽  
Prakash Srirangam

2019 ◽  
Vol 969 ◽  
pp. 589-594
Author(s):  
R. Dinesh Kumar ◽  
D. Srija ◽  
P. Suresh ◽  
S. Muthukumaran

The aluminium alloys AA2024 and AA6061 are widely used for fabricating light weight structural member with better strength and corrosion resistance. Friction stir welding (FSW) parameters such as rotational speed, tool shoulder profile and traverse speed are used to identify the corrosion resistance and microstructural analysis in different weld region of AA2024-AA6061 dissimilar joints. In this work, Taguchi L9 orthogonal array with three variables and three stages has been used to reduce the number of experiments. Potentiodynamic polarization (PDP) testing results are optimized by ANOVA technique and obtain the corrosion rate as 5.72 mil/yr and resistance polarization as 835.28 ohm.cm2. The optimal parameter set is found to be 1000 rpm, flat shoulder and 45 mm/min. The microstructural analysis reveals localized pit dissolution in the nugget zoneThe aluminium alloys AA2024 and AA6061 are widely used for fabricating light weight structural member with better strength and corrosion resistance. Friction stir welding (FSW) parameters such as rotational speed, tool shoulder profile and traverse speed are used to identify the corrosion resistance and microstructural analysis in different weld region of AA2024-AA6061 dissimilar joints. In this work, Taguchi L9 orthogonal array with three variables and three stages has been used to reduce the number of experiments. Potentiodynamic polarization (PDP) testing results are optimized by ANOVA technique and obtain the corrosion rate as 5.72 mil/yr and resistance polarization as 835.28 ohm.cm2. The optimal parameter set is found to be 1000 rpm, flat shoulder and 45 mm/min. The microstructural analysis reveals localized pit dissolution in the nugget zone.


Author(s):  
S. Yu. Shachnev ◽  
G. G. Larin

The article is devoted to the one of the features of choosing the technical parameters of regime of friction stir welding. The tool tilt angle is the object of research. This parameter underlies the mechanism of the formation of welding joints. The methodology and the experiment’s results of determining the influence of the tool tilt angle from the power and thermal characteristics of the process of friction stir welding are presented in this work. Also there is a presentation of the results of the welded joints’ studies which were done by the non-destructive and destructive methods of control. The dependency of the tool tilt angle from the power and the temperature in the welding zone is defined on the basis of the received results.


2015 ◽  
Vol 656-657 ◽  
pp. 490-495
Author(s):  
Pei Lun Ting ◽  
Chi Ying Tsai ◽  
Liu Ho Chiu ◽  
Chin Pao Cheng

Tensile strength, metallographic and structural analyses of anodized aluminum sheet–copper sheet dissimilar welds produced under various friction stir welding (FSW) conditions were conducted. The 6061 specimens were heated to 530~570 oC, held for 1 hour, followed by water quenching and furnace cooling. AA 6061-T6 Al sheets were anodized to thicknesses of 5μm and 12μm, respectively. FSW joints were characterized using microstructural analysis, microhardness measurements and tensile testing. The tensile strength of the 6061-T6/6061-T6 joint using FSW is 145 MPa. However, the tensile strength of the 6061-T6/Cu joint using FSW is decreased to 100 MPa. When the anodized layer was increased the tensile strength of the 6061-T6/Cu joint using FSW was decreased to a value below 50 MPa. Increasing the anodized layer thickness disturbed material mixing and the formation of increasing amounts of oxide rich structures. The oxide phase content and the mixed area homogeneity were increased with increasing layer thickness, decreasing the tensile strength of the FSW joints.


Sign in / Sign up

Export Citation Format

Share Document