scholarly journals Calculation of the minimal length of the high-speed line

2021 ◽  
Vol 31 ◽  
pp. 30-35
Author(s):  
Petr Nachtigall ◽  
Erik Tischer

This paper explores the minimum length of continuous sections of the high-speed line. The minimum length is examined in terms of the maximum speed of high-speed vehicles. Both traditional trainsets consisting of traction units and coaches, and train units were selected for examination. The graphs present the difference in the ability of the different vehicles to reach and use the maximumspeed.

Author(s):  
Zengjie Liu ◽  
Lan Wang

Based on the principle of no car vibrations interference when trains pass grade section from the end of front vertical curve to the start of latter vertical curve, using railway wheel/rail simulation NUCARS™ software, some dynamics simulation studies for minimum grade lengths on high speed railway lines were made. The dynamics simulation results show that, the minimum tangent lengths between vertical transition curves should be more than 0.43V in meters (V is speed of train, km/h). So the minimum length is 800 meters when the vertical curve radius is 25000 meters, and 900 meters when radius is 30000 meters for the Chinese Dedicated Passenger Railway lines (PDLs) on which maximum speed is 350 km/h and ruling gradient is 12‰.


2020 ◽  
Vol 68 (4) ◽  
pp. 303-314
Author(s):  
Yuna Park ◽  
Hyo-In Koh ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
...  

Railway noise is calculated to predict the impact of new or reconstructed railway tracks on nearby residential areas. The results are used to prepare adequate counter- measures, and the calculation results are directly related to the cost of the action plans. The calculated values were used to produce noise maps for each area of inter- est. The Schall 03 2012 is one of the most frequently used methods for the production of noise maps. The latest version was released in 2012 and uses various input para- meters associated with the latest rail vehicles and track systems in Germany. This version has not been sufficiently used in South Korea, and there is a lack of standard guidelines and a precise manual for Korean railway systems. Thus, it is not clear what input parameters will match specific local cases. This study investigates the modeling procedure for Korean railway systems and the differences between calcu- lated railway sound levels and measured values obtained using the Schall 03 2012 model. Depending on the location of sound receivers, the difference between the cal- culated and measured values was within approximately 4 dB for various train types. In the case of high-speed trains, the value was approximately 7 dB. A noise-reducing measure was also modeled. The noise reduction effect of a low-height noise barrier system was predicted and evaluated for operating railway sites within the frame- work of a national research project in Korea. The comparison of calculated and measured values showed differences within 2.5 dB.


2021 ◽  
Vol 13 (11) ◽  
pp. 6482
Author(s):  
Sergejus Lebedevas ◽  
Laurencas Raslavičius

A study conducted on the high-speed diesel engine (bore/stroke: 79.5/95.5 mm; 66 kW) running with microalgae oil (MAO100) and diesel fuel (D100) showed that, based on Wibe parameters (m and φz), the difference in numerical values of combustion characteristics was ~10% and, in turn, resulted in close energy efficiency indicators (ηi) for both fuels and the possibility to enhance the NOx-smoke opacity trade-off. A comparative analysis by mathematical modeling of energy and traction characteristics for the universal multi-purpose diesel engine CAT 3512B HB-SC (1200 kW, 1800 min−1) confirmed the earlier assumption: at the regimes of external speed characteristics, the difference in Pme and ηi for MAO100 and D100 did not exceeded 0.7–2.0% and 2–4%, respectively. With the refinement and development of the interim concept, the model led to the prognostic evaluation of the suitability of MAO100 as fuel for the FPT Industrial Cursor 13 engine (353 kW, 6-cylinders, common-rail) family. For the selected value of the indicated efficiency ηi = 0.48–0.49, two different combinations of φz and m parameters (φz = 60–70 degCA, m = 0.5 and φz = 60 degCA, m = 1) may be practically realized to achieve the desirable level of maximum combustion pressure Pmax = 130–150 bar (at α~2.0). When switching from diesel to MAO100, it is expected that the ηi will drop by 2–3%, however, an existing reserve in Pmax that comprises 5–7% will open up room for further optimization of energy efficiency and emission indicators.


2012 ◽  
Vol 262 ◽  
pp. 361-366
Author(s):  
Zhuo Fei Xu ◽  
Hai Yan Zhang ◽  
Ling Hui Ren

Roller-mark is a common problem in offset printing and its solution method is important for printing. A new detecting method of texture analysis was given in this paper. In this study, printing image was acquired with high-speed CCD. Compared the difference between printing image and standard image, a defective image was obtained. Then the reason of roller-marks was given by the texture recognition of defect image. Finally, experiments were taken to prove the feasibility and effectiveness of this new method for the roller-marks diagnosis in the offset printing machine.


Author(s):  
A. J. Gannon ◽  
G. V. Hobson ◽  
R. P. Shreeve ◽  
I. J. Villescas

High-speed pressure measurements of a transonic compressor rotor-stator stage and rotor-only configuration during stall and surge are presented. Rotational speed data showed the difference between the rotor-only case and rotor-stator stage. The rotor-only case stalled and remained stalled until the control throttle was opened. In the rotor-stator stage the compressor surged entering a cyclical stalling and then un-stalling pattern. An array of pressure probes was mounted in the case wall over the rotor for both configurations of the machine. The fast response probes were sampled at 196 608 Hz as the rotor was driven into stall. Inspection of the raw data signal allowed the size and speed of the stall cell during its growth to be investigated. Post-processing of the simultaneous signals of the casing pressure showed the development of the stall cell from the point of inception and allowed the structure of the stall cell to be viewed.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Neerav Abani ◽  
Jaal B. Ghandhi

Turbulent starting jets with time-varying injection velocities were investigated using high-speed schlieren imaging. Two solenoid-controlled injectors fed a common plenum upstream of an orifice; using different upstream pressures and actuation times, injection-rate profiles with a step increase or decrease in injection velocity were tested. The behavior of the jet was found to be different depending on the direction of the injection-velocity change. A step increase in injection velocity resulted in an increased rate of penetration relative to the steady-injection case, and a larger increase in injection velocity resulted in an earlier change in the tip-penetration rate. The step-increase data were found to be collapsed by scaling the time by a convective time scale based on the tip location at the time of the injection-velocity change and the difference in the injection velocities. A sudden decrease in injection velocity to zero was found to cause a deviation from the corresponding steady-pressure case at a time that was independent of the initial jet velocity, i.e., it was independent of the magnitude of the injection-velocity change. Two models for unsteady injection from the literature were tested and some deficiencies in the models were identified.


2021 ◽  
Vol 11 (10) ◽  
pp. 4390
Author(s):  
Carlos Sosa ◽  
Alberto Lorenzo ◽  
Juan Trapero ◽  
Carlos Ribas ◽  
Enrique Alonso ◽  
...  

The aim of this study was (I) to establish absolute specific velocity thresholds during basketball games using local positional system (LPS) and (II) to compare the speed profiles between various levels of competitions. The variables recorded were total distance (TD); meters per minute (m·min); real time (min); maximum speed (Km h−1), distance (m), percentage distance, and percentage duration invested in four speed zones (standing–walking; jogging; running; and high-speed running). Mean and standard deviation (±SD) were calculated, and a separate one-way analysis of variance was undertaken to identify differences between competitions. TD (3188.84 ± 808.37 m) is covered by standing–walking (43.51%), jogging (36.58%), running (14.68%), and sprinting (5.23%) activities. Overall, 75.22% of the time is invested standing–walking, jogging (18.43%), running (4.77%), and sprinting (1.89%). M·min (large effect size), % duration zone 2 (moderate effect size); distance zone 4 (large effect size), and % distance zone 4 (very large effect size) are significantly higher during junior than senior. However, % distance zone 1 (large effect size) and % duration zone 1 (large effect size) were largely higher during senior competition. The findings of this study reveal that most of the distance and play time is spent during walking and standing activities. In addition, the proportion of time spent at elevated intensities is higher during junior than in senior competition.


1996 ◽  
Vol 118 (2) ◽  
pp. 178-187 ◽  
Author(s):  
E. D. Tung ◽  
M. Tomizuka ◽  
Y. Urushisaki

Experiments are performed for end milling aluminum at 15,000 RPM spindle speed (1,508 m/min cutting speed) and up to 3 m/min table feedrate using an experimental machine tool control system. A digital feedforward controller for feed drive control incorporates the Zero Phase Error Tracking Controller (ZPETC) and feedforward friction compensation. The controller achieves near-perfect (±3 μm) tracking over a 26 mm trajectory with a maximum speed of 2 m/min. The maximum contouring error for a 26 mm diameter circle at this speed is less than 4 μm. Tracking and contouring experiments are conducted for table feedrates as high as 10 m/min. Frequency domain analysis demonstrates that the feedforward controller achieves a bandwidth of 10 Hz without phase distortion. In a direct comparison of accuracy, the machining errors in specimens produced by the experimental controller were up to 20 times smaller than the errors in specimens machined by an industrial CNC.


1987 ◽  
Vol 3 (1) ◽  
pp. 47-62 ◽  
Author(s):  
Ross H. Sanders ◽  
Barry D. Wilson

This study investigated the in-flight rotation of elite 3m springboard divers by determining the angular momentum requirement about the transverse axis through the divers center of gravity (somersault axis) required to perform a forward 1 1/2 somersault with and without twist. Three elite male divers competing in the 1982 Commonwealth Games were filmed using high-speed cinematography while performing the forward 1 1/2 somersault in the pike position and the forward 1 1/2 somersault with one twist in a free position. The film was digitized to provide a kinematic description of each dive. An inclined axis technique appeared to be the predominant means of producing twist after takeoff from the board. The angular momentum about the somersault axis after takeoff was greater for the forward 1 1/2 somersault with twist than the forward 1 1/2 somersault without twist for all three divers. The difference in angular momentum between the two dives of each diver ranged from 6% to 19%. The most observable difference between the dives during the preflight phases was the degree of hip flexion at takeoff. There was more hip flexion at takeoff in 5132D than 103B for all three divers. This difference ranged from 9° to 18° (mean = 14°).


2021 ◽  
Vol 26 (3-4) ◽  
pp. 282-290
Author(s):  
S.V. Volobuev ◽  
◽  
V.G. Ryabtsev ◽  

The I/О synchronization scheme plays an important role in achieving maximum speed and reliability of data transmission during memory operation. This paper presents the interface architecture of the DDR SDRAM test diagnostic device. It was demonstrated that the proposed interface components provide the formation of a bidirectional synchro signal for gating written and read data when performing test diagnostics of chips and DDR SDRAM memory devices. Compared to traditional methods, the proposed interface components were made on integrated electronic elements, which reduced the size and power consumption. It has been established that the use of a multiphase synchronization system to implement the interface eliminated the use of delay lines, the disadvantages of which are large dimensions and the complexity of changing the delay time. The interface components under consideration are intended for use in test diagnostics devices that have a multiprocessor structure, which increases the speed of forming test actions and reference reactions. The performed functional modeling and debugging of strobe signal generators confirmed the feasibility of the designs. The proposed interface of the test diagnostics device allows performing test diagnostics of modern high-speed chips and semiconductor memory modules at the operating frequency, which increases the reliability of the results obtained. Interface components can be used by manufacturers of test diagnostics tools for modern high-speed storage devices.


Sign in / Sign up

Export Citation Format

Share Document