Examination of chemical composition of wood-plastic composites by differential scanning calorimetry and infrared spectroscopy

Polimery ◽  
2019 ◽  
Vol 64 (05) ◽  
pp. 333-339
Author(s):  
Tomasz Golofit ◽  
Tomasz Zielenkiewicz ◽  
Jakub Gawron ◽  
Katarzyna Cieslak ◽  
Waldemar Tomaszewski ◽  
...  
2013 ◽  
Vol 39 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Masahiko KOBAYASHI ◽  
Satoshi KUBO ◽  
Makoto KIGUCHI ◽  
Yutaka KATAOKA ◽  
Masahiro MATSUNAGA ◽  
...  

Holzforschung ◽  
2011 ◽  
Vol 65 (2) ◽  
Author(s):  
Michael Windt ◽  
Dietrich Meier ◽  
Ralph Lehnen

Abstract The common use of wood together with traditional chemical polymers opens new possibilities in the field of sustainable product development. Wood plastic composites (WPCs) are an ideal combination of these raw materials, which can be produced with standard plastic technology such as extrusion or injection moulding. Wood to plastic ratio in a WPC influences quality and price, thus adaptation of analytical tools for material testing and quality assurance is required. In this study, the suitability of analytical pyrolysis (Py) and differential scanning calorimetry (DSC) was investigated to quantify the amount of polypropylene (PP) in WPCs. The reliability of these methods was tested by analysing WPCs with different ratios of wood and PP. The amount of PP can be determined with DSC based on its melting point as the influence of wood is negligible in this context. The increment of typical PP markers and decrement of wood markers was observed and quantified in the pyrograms if the PP content in WPCs was elevated. Thus, the ratio of PP and wood can be reliably quantified by means of online and offline analytical pyrolysis.


2018 ◽  
Vol 39 (4) ◽  
pp. 21
Author(s):  
Gilbert Bannach ◽  
Rafael R. Almeida ◽  
Luis G. Lacerda ◽  
Egon Schnitzler ◽  
Massao Ionashiro

Several papers have been described on the thermal stability of the sweetener, C12H19Cl3O8 (Sucralose). Nevertheless no study using thermoanalytical techniques was found in the literature. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC) and infrared spectroscopy, have been used to study the thermal stability and thermal decomposition of sweetener.


2008 ◽  
Vol 33 (4) ◽  
pp. 61-68 ◽  
Author(s):  
C. T. de Carvalho ◽  
A. B. Siqueira ◽  
E. Y. Ionashiro ◽  
M. Pivatto ◽  
M. Ionashiro

The 2-methoxycinnamylidenepyruvic acid (2-MeO-HCP) was synthesized and characterized for nuclear magnetic resonance (¹H and 13C NMR), mass spectrometry (MS), Infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The application of DSC for purity determination is well documented in literature and is used in the analysis of pure organic compounds. The molecular geometry and vibrational frequencies of 2-MeO-HCP have been calculated.


2020 ◽  
Vol 19 (2) ◽  
pp. 361-369 ◽  
Author(s):  
Hiba H. Ali ◽  
Mowafaq M. Ghareeb ◽  
Mayyas Al-Remawi ◽  
Faisal T. Al-Akayleh

Purpose: To examine the structural changes of a eutectic mixture comprising capric acid and menthol which are commonly used in pharmaceutical applications. Methods: A phase diagram was constructed by quantitative mixing of capric acid and menthol under controlled conditions until a single liquid phase was formed. Eutectic mixtures of capric acid: menthol at the ratios of 3:2, 1:4, 1:1, 2:3, and 1:4 were prepared. Hydrogen bond formation and conformational changes were analyzed using Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Microscopic imaging was carried out to capture phase change events upon increasing temperature. Results: Menthol confirmed the intact structure of a hexagonal ring. The high degree of broadening of the menthol O-H groups indicates hydrogen bond formation. FTIR band changes related to capric acid suggest a break-up of the methylene arrangement structure due to changes in the C-H band frequencies. The red shift encountered in C=O stretching band emphasizes hydrogen bond formation taking place between the oxygen atom of the hydroxyl group comprising the carboxylic moiety of capric acid and the hydrogen atom of menthol hydroxyl group. DSC results indicate the presence of two polymorphs of the capric acid/ menthol complex. Both exhibited crystallization and conformational change exotherms in addition to two melting endotherms as result of transformation of crystalline components to become partially crystalline due to hydrogen bond formation. Conclusion: The interaction between capric acid and menthol results in a typical preparation of deep eutectic systems that can act as natural-based solvents in numerous pharmaceutical applications. Keywords: Eutectic system, Capric acid, Menthol, Differential scanning calorimetry, DSC, Fourier transform infrared spectroscopy, FTIR


1993 ◽  
Vol 47 (10) ◽  
pp. 1636-1642 ◽  
Author(s):  
Cindy A. Burkhardt ◽  
Joseph A. Gardella

The effects of homopolymer molecular weight on the miscibility of PVC/PMMA solvent cast blends were studied. Two significantly different molecular weights were chosen for each of the homopolymers, and a series of blends was prepared from the four possible homopolymer-homopolymer combinations. Angle-dependent ESCA results suggest that the surfaces of the blends are enriched with PMMA. The extent of this enrichment is dependent on molecular weight, with the most enrichment seen in blends containing the lower-molecular-weight PMMA homopolymer. Differential scanning calorimetry (DSC) results are also presented.


Sign in / Sign up

Export Citation Format

Share Document