scholarly journals The Arabidopsis Phytocystatin AtCYS5 Enhances Seed Germination and Seedling Growth under Heat Stress Conditions

2017 ◽  
Vol 40 (8) ◽  
pp. 577-586 ◽  
Author(s):  
Chieun Song ◽  
Taeyoon Kim ◽  
Woo Sik Chung ◽  
Chae Oh Lim
2020 ◽  
Vol 42 ◽  
Author(s):  
Marcone Moreira Santos ◽  
Eduardo Euclydes de Lima e Borges ◽  
Glauciana da Mata Ataíde ◽  
Raquel Maria de Oliveira Pires ◽  
Debora Kelli Rocha

Abstract: Recent studies indicate that global temperatures will rise substantially in the 21st century, leading to the extinction of several plant species, as plant metabolism and germination are greatly affected by temperature. Melanoxylon brauna, a tree species native to the Atlantic Forest that occurs from northeastern to southeastern Brazil, is one of the many species threatened by global warming. Despite the economic and ecological importance of M. brauna, studies investigating the influence of heat stress on seed germination and biochemical responses are still incipient. This study aimed to evaluate enzyme activity in the micropylar region of M. brauna seeds during germination under heat stress conditions. Endo-β-mannanase, α-galactosidase, polygalacturonase, pectin methylesterase, pectin lyase, total cellulase, 1,3-β-glucosidase, and 1,4-β-glucosidase activities were determined in micropyles of seeds imbibed for 24, 48 and 72 h at 25, 35 and 45 °C. Seed germination was highest at 25 °C. Endo-β-mannanase activity was not detected under any of the experimental conditions, but imbibition temperature had a significant effect on the activity of all other enzymes.


2020 ◽  
Vol 158 (4) ◽  
pp. 255-261
Author(s):  
Jorge Alvar-Beltrán ◽  
Leonardo Verdi ◽  
Anna Dalla Marta ◽  
Abdalla Dao ◽  
Roberto Vivoli ◽  
...  

AbstractQuinoa (Chenopodium quinoa Willd.) is capable of adapting to multiple environments and tolerating abiotic stresses including saline, drought and frost stress conditions. However, the introduction of quinoa into new environments has disclosed adaptation challenges. The principle factor affecting crop pollination is heat stress at flowering, which leads to sterile plants. To investigate the effect of high temperatures during the sensitive phenological phases, flowering and seed germination, a Danish-bred cultivar (cv. Titicaca) was grown in climatic chambers. Selection of the cv. Titicaca was based on the fact that it is the most extensively used cultivar in the Sahel and Middle East and North African region. The results of this research demonstrated that temperatures exceeding 38 °C hindered seed germination and pollination, and therefore, seed yield at harvest. At 38 °C, seed yield losses were 30%, whilst seed germination percentage declined below 50%. In addition, the results of the present research were compared with field observations from Burkina Faso in order to determine the spatiotemporal suitability of this crop with respect to temperature stress. Although many other abiotic stresses need to be considered when defining crop calendars (e.g. heavy precipitation in July and August), this research proposes the following growing periods to avoid heat-stress conditions at flowering: Sahel (July–September and November–February), Soudano–Sahel (June–February) and Soudanian zone (all year round).


2020 ◽  
Vol 48 (2) ◽  
pp. 938-953
Author(s):  
Taieb TOUNEKTI ◽  
Mosbah MAHDHI ◽  
Zarraq AL-FAIFI ◽  
Habib KHEMIRA

Seeds of three sorghum (Sorghum bicolor (L.) Moench.) varieties from Southwest Saudi Arabia were used to investigate the potential of osmopriming with polyethylene glycol (PEG 8000) to improve germination performance, seed reserve utilization and early seedling growth and drought stress tolerance. The primed (PS) and unprimed (UPS) seeds of the three sorghum varieties were germinated for 8 days under increasing PEG-induced osmotic stress. The treatments were arranged in a completely randomized design, in a factorial arrangement, with three sorghum cultivars (‘Zaydia’, ‘Shahbi’ and ‘Ahmar’) and four osmotic potentials (0.0; -0.4; -0.8 and -1.2 MPa) with four replicates of 50 seeds each. The results showed that drought stress affected seed germination and seedling emergence and establishment, but increased the activity of the antioxidant enzyme catalase (CAT). The strongest inhibition of germination and growth occurred at the highest PEG concentration and a significant difference was noticeable between the studied varieties. We confirmed also that seed osmopriming improved seed germination performance, seedling growth and enhanced the CAT activities while reduced malonyldialdehyde (MDA) accumulation and electrolyte leakage (EL) in the drought-stressed seedlings. Seed priming have enhanced also the α-amylase and total proteases activities in all varieties. The largest increase of these hydrolysing enzymes was shown in ‘Ahmar’. Furthermore, the PEG priming lead to improvement of the weight of utilized (mobilized) seed reserve (WUSR), seed reserve depletion percentage (SRDP) and total seedling dry weight (SLDW) of sorghum seedlings under water stress conditions. Still, the highest values or all three parameters were found in the ‘Ahmar’ variety. Under increasing drought stress conditions, ‘Ahmar’ showed the highest yield stability index (YSI) and the least EL and MDA contents in comparison to the other two varieties during the seedling establishment stage. Therefore, the former variety can tolerate better a rigorous water stress condition. ‘Zaydia’ appears to be the most vulnerable to drought stress. Thus, the use of species or varieties with eminent seed metabolic quality is an advantageous trait in drought-prone regions.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Binghua Liu ◽  
Xinghong Liu ◽  
Fangchun Liu ◽  
Hailin Ma ◽  
Bingyao Ma ◽  
...  

AbstractComparative evaluations were conducted to assess the effects of different pH levels, NaCl-induced salt stress, and PEG-induced drought stress on the mycelial growth of Xerocomus badius. The results showed that X. badius mycelium grew well at a wide pH range of 5.00 ~ 9.00. Although the mycelium remained viable, mycelial growth of X. badius was significantly inhibited with increasing salt and drought stresses. Furthermore, a soilless experiment in Petri dishes was performed to investigate the potential of X. badius to induce beneficial effects on seed germination and seedling growth of annual ryegrass (Lolium multiflorum Lam.) under salt and drought stresses. Seed priming with X. badius enhanced the seedling growth of L. multiflorum Lam. under NaCl-induced salt stress and PEG-induced drought stress. However, X. badius did not significantly improve the seed germination under non-stress and mild stress conditions. It suggested that X. badius inoculation with seeds was not essential for seed germination under non-stress and mild stress conditions, but contributed highly to seedling growth under severe stress conditions. Therefore, seed priming with X. badius on ryegrass could be an effective approach to enhance plant tolerance against drought and salt stresses. X. badius could be a good candidate for the inoculation of ectomycorrhizal plants cultivation programs in mild saline and semiarid areas.


2021 ◽  
Author(s):  
Huimei Zhao ◽  
Asad Jan ◽  
Naohiko Ohama ◽  
Satoshi Kidokoro ◽  
Fumiyuki Soma ◽  
...  

2017 ◽  
Vol 21 (2) ◽  
pp. 108-110
Author(s):  
Milka Vujakovic ◽  
Ana Marjanovic-Jeromela ◽  
Dusica Jovicic ◽  
Jelena Ovuka ◽  
Miladin Kostic

Sign in / Sign up

Export Citation Format

Share Document