Studies on Seed Germination and Seedling Growth of Silybum marianum (L.) Gaertn under Water-Deficit Stress Conditions

2018 ◽  
Vol 6 (6) ◽  
pp. 978-985
Author(s):  
Milan Jain ◽  
PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259585
Author(s):  
Gull Mehak ◽  
Nudrat Aisha Akram ◽  
Muhammad Ashraf ◽  
Prashant Kaushik ◽  
Mohamed A. El-Sheikh ◽  
...  

Optimum water availability at different growth stages is one the major prerequisites of best growth and yield production of plants. Exogenous application of plant growth regulators considered effective for normal functioning of plants under water-deficit conditions. A study was conducted to examine the influence of exogenously applied L-methionine on sunflower (Helianthus annuus L.) plants grown under water-deficit conditions. Twenty-five-day old seedlings of four sunflower cultivars, FH331, FH572, FH652 and FH623 were exposed to control (100% F.C.) and drought stress (60% F.C.) conditions. After 30-day of drought stress, L-methionine (Met; 20 mg/L) was applied as a foliar spray to control and drought stressed plants. Water deficit stress significantly reduced shoot fresh and dry weights shoot and root lengths, and chlorophyll a content in all four cultivars. While a significant increase was observed due to water deficiency in relative membrane permeability (RMP), malondialdehyde (MDA), total soluble proteins (TSP), total soluble sugars (TSS), ascorbic acid (AsA) and activity of peroxidase (POD). Although, exogenously applied Met was effective in decreasing RMP, MDA and H2O2 contents, it increased the shoot fresh weight, shoot length, chlorophyll a, chlorophyll a/b ratio, proline contents and the activities of SOD, POD and CAT enzymes in all four cultivars under water deficit stress. No change in AsA and total phenolics was observed due to foliar-applied Met under water stress conditions. Of all sunflower cultivars, cv. FH-572 was the highest and cv. FH-652 the lowest of all four cultivars in shoot fresh and dry weights as well as shoot length under drought stress conditions. Overall, foliar applied L-methionine was effective in improving the drought stress tolerance of sunflower plants that was found to be positively associated with Met induced improved growth attributes and reduced RMP, MDA and H2O2 contents under water deficit conditions.


2019 ◽  
Vol 5 (2) ◽  
pp. 55-72 ◽  
Author(s):  
Seyedeh Zahra Hosseini ◽  
Ahmad Ismaili ◽  
Seyed Sajad Sohrabi ◽  
◽  
◽  
...  

2017 ◽  
Vol 121 ◽  
pp. 118-127 ◽  
Author(s):  
Pattaranit Putpeerawit ◽  
Punchapat Sojikul ◽  
Siripong Thitamadee ◽  
Jarunya Narangajavana

2017 ◽  
Vol 9 (12) ◽  
pp. 259
Author(s):  
Amin Namdari ◽  
Abolfazl Baghbani

Due to low rainfall at early autumn, smooth vetch seedling growth in rain-fed lands often is limited by water deficit stress yet the data regarding the reactions of smooth vetch to water deficit at early growth stages are pretty rare. The objective of current study was to examine possibility of using priming treatments (hydro priming and priming salicylic acid) to alleviate the inhibitory effect of water deficiency during early growth of Smooth Vetch. In this respect, seeds were soaked in distilled water (hydro priming) or 0.5 mM solution of SA for 36 h at 10 °C then dried back to original moisture content. Pots were irrigated for 25 days at four levels of available water containing field capacity (FC), 75% FC, 50% FC and 25% FC. In general, seedling emergence and early growth were markedly limited by increasing water deficiency. However, priming treatments particularly with SA caused considerable improvement in either emergence or growth of seedlings (dry weight, length). The obtained results showed that primed samples exhibited higher accumulation of proline, glycine betaine (GB) under all levels of available water except 100% FC and also higher total soluble sugars (TSS) and trehalose under severe water deficit (25% FC). SA primed samples had higher relative water content especially under higher levels of water deficiency. The more balanced water status within SA primed samples also was accompanied with higher accumulation of proline and glycine betaine. There were significant differences between two priming treatments in terms of proline and GB content within seedlings and SA priming considerably increased proline and GB accumulation. In contrast to proline and GB, TSS and trehalose content wasn’t influenced by SA treatment and both hydro and SA primed samples showed statistically similar quantities.


2019 ◽  
Vol 446 (1-2) ◽  
pp. 343-356 ◽  
Author(s):  
António Teixeira ◽  
Pietro Iannetta ◽  
Kirsty Binnie ◽  
Tracy A. Valentine ◽  
Peter Toorop

Abstract Aims Myxospermous seed mucilage is multifunctional and is often found in seeds (or achenes) of species occupying arid environments where the trait may influence seed-dispersal and -germination of seeds. The seed mucilage may also enhance soil-water retention, −hydraulic conductivity and -stability. However, the relationship between seed mucilage quantity, seed germination and seedling traits across environmental gradients which determine water-deficit stress has not yet been ascertained. Methods Therefore, we characterised and tested the relationship between seed mucilage quantity, water-deficit stress responses of seeds and seedlings of 36 accessions of four different Plantago species (P. albicans L., P. coronopus L., P. lagopus L. and P. anceolata L.). These were gathered from six regions across Europe, which presented environmental gradients (of rainfall and temperature), and varying soil qualities. Results Seed mucilage was significantly greater in seeds of accessions experiencing: highest summer temperatures; lowest summer precipitation; soils of the same warm dry regions which had greater capacity to retain water within narrow pore spaces. Under water-deficit stress, seeds with most mucilage exhibited a lower base water potential for germination, suffered least seedling mortality and exhibited the most successful seedling development. Conclusions The findings indicate that seed mucilage quantity appeared as an ‘adaptive’ trait and there is a relationship between seed-mucilage quantity, seed germination plus seedling survival and development under environmental conditions of highest water-deficit stress.


2011 ◽  
Vol 39 (2) ◽  
pp. 153 ◽  
Author(s):  
Nourali SAJEDI ◽  
Hamid MADANI ◽  
Ahmad NADERI

This study was carried out to investigate effects of microelements under water deficit stress at different growth stages on antioxidant enzyme alteration, chemical biomarker and grain yield of maize in the years 2007 and 2008. The experiment was conducted in a split plot factorial based on a randomized complete block design with four replications. There were three factors, water deficit stress at different stages of growth as main plot and combinations of selenium (with and without using) and microelements (with and without using) as sub plots. The result indicated that the activity of superoxide dismutase and malondialdehyde content under water deficit stress increased, but grain yield was reduced. The highest grain yield was obtained from optimum irrigation, while in the case of with water deficit stress at V8 stage it was non significant. Selenium spray increased activity of superoxide dismutase enzyme, malondialdehyde content of leaves in V8, R2 and R4 stages and also grain yield. Application of microelements increased the leaves superoxide dismutase enzyme activity and malondialdehyde content. Selenium and microelements spray under water deficit stress conditions during vegetative growth and dough stage increased grain yield in comparison to not spraying elements under water stress conditions. The present results also showed that by using selenium and microelements under water stress can obtain acceptable yield compared to not using these elements.


Sign in / Sign up

Export Citation Format

Share Document