System Calibration Including Time Delay Estimation for GNSS/INS-Assisted Pushbroom Scanners Onboard UAV Platforms

2021 ◽  
Vol 87 (10) ◽  
pp. 705-716
Author(s):  
Lisa M. LaForest ◽  
Tian Zhou ◽  
Seyyed Meghdad Hasheminasab ◽  
Ayman Habib

Unmanned aerial vehicles (UAVs ) equipped with imaging sensors and integrated global navigation satellite system/inertial navigation system (GNSS/INS ) units are used for numerous applications. Deriving reliable 3D coordinates from such UAVs is contingent on accurate geometric calibration, which encompasses the estimation of mounting parameters and synchronization errors. Through a rigorous impact analysis of such systematic errors, this article proposes a direct approach for spatial and temporal calibration (estimating system parameters through a bundle adjustment procedure) of a GNSS/INS -assisted pushbroom scanner onboard a UAV platform. The calibration results show that the horizontal and vertical accuracies are within the ground sampling distance of the sensor. Unlike for frame camera systems, this article also shows that the indirect approach is not a feasible solution for pushbroom scanners due to their limited ability for decoupling system parameters. This finding provides further support that the direct approach is recommended for spatial and temporal calibration of UAV pushbroom scanner systems.

2021 ◽  
Vol 56 (5) ◽  
pp. 552-562
Author(s):  
Mohd Azwan Abbas ◽  
Norshahrizan Mohd Hashim ◽  
Mohamad Faiz Mohd Zaim ◽  
Muhammad Husaini Ya’cob ◽  
Ahmad Azmi Hashim ◽  
...  

The demand for positional accuracy and multi-dimensional data have demonstrated drastic changes in the geomatics data adjustment approach. Furthermore, the capability of modern sensors to provide high accuracy data (i.e., global navigation satellite system) has caused the crucial requirement for a rigorous adjustment that can process data from multi-sensors. Geomatics practitioners have gradually transformed the adjustment procedure to the most rigorous approach (i.e., parametric linear regression) to adapt to current demand. However, legacy datasets that utilize independent line constraint in the traditional adjustment approach have caused significant uncertainties in parametric linear regression (LR) adjustment. To resolve this dilemma, this research has designed robust experiments using closed traverse types: single-line constraint, multi-line constraints, and sub-network line constraint. Through errors trend and network form deterioration analyses, the outcomes have visually and numerically verified the insignificant of independent line constraints in parametric LR. However, the establishment of control points at the beginning or end of lines could solve the limitation of the abovementioned issue. In both analyses, control points at initial lines have demonstrated the best solution for constrained adjustment. The obtained results have exemplified the appropriate implementation of network adjustment in the presence of line constraints. As positional accuracy becomes the main priority, it can be concluded that points-based constraints are more advisable in preserving the quality of cadastral network adjustment.


2019 ◽  
Vol 11 (9) ◽  
pp. 1120 ◽  
Author(s):  
Raul Onrubia ◽  
Daniel Pascual ◽  
Hyuk Park ◽  
Adriano Camps ◽  
Christoph Rüdiger ◽  
...  

This work analyzes the satellite cross-talk observed by the microwave interferometric reflectometer (MIR), a new global navigation satellite system (GNSS) reflectometer, during an airborne field campaign in Victoria and New South Wales, Australia. MIR is a GNSS reflectometer with two 19-element, dual-band arrays, each of them having four steerable beams. The data collected during the experiment, the characterization of the arrays, and the global positioning system (GPS) and Galileo ephemeris were used to compute the expected delays and power levels of all incoming signals, and the probability of cross-talk was then evaluated. Despite the MIR highly directive arrays, the largest ever for a GNSS-R instrument, one of the flights was found to be contaminated by cross-talk almost half of the time at the L1/E1 frequency band, and all four flights were contaminated ∼5–10% of the time at the L5/E5a frequency band. The cross-talk introduces an error of up to 40 cm of standard deviation for altimetric applications and about 0.24 dB for scatterometric applications.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2318 ◽  
Author(s):  
Martin Štroner ◽  
Rudolf Urban ◽  
Tomáš Reindl ◽  
Jan Seidl ◽  
Josef Brouček

Using a GNSS RTK (Global Navigation Satellite System Real Time Kinematic) -equipped unmanned aerial vehicle (UAV) could greatly simplify the construction of highly accurate digital models through SfM (Structure from Motion) photogrammetry, possibly even avoiding the need for ground control points (GCPs). As previous studies on this topic were mostly performed using fixed-wing UAVs, this study aimed to investigate the results achievable by a quadrocopter (DJI Phantom 4 RTK). Three image acquisition flights were performed for two sites of a different character (urban and rural) along with three calculation variants for each flight: georeferencing using ground-surveyed GCPs only, onboard GNSS RTK only, and a combination thereof. The combined and GNSS RTK methods provided the best results (at the expected level of accuracy of 1–2 GSD (Ground Sample Distance)) for both the vertical and horizontal components. The horizontal positioning was also accurate when georeferencing directly based on the onboard GNSS RTK; the vertical component, however, can be (especially where the terrain is difficult for SfM evaluation) burdened with relatively high systematic errors. This problem was caused by the incorrect identification of the interior orientation parameters calculated, as is customary for non-metric cameras, together with bundle adjustment. This problem could be resolved by using a small number of GCPs (at least one) or quality camera pre-calibration.


Author(s):  
P. Trusheim ◽  
Y. Chen ◽  
F. Rottensteiner ◽  
C. Heipke

Abstract. Localisation is one of the key elements in navigation. Especially due to the development in automated driving, precise and reliable localisation becomes essential. In this paper, we report on different cooperation approaches in visual localisation with two vehicles driving in a convoy formation. Each vehicle is equipped with a multi-sensor platform consisting of front-facing stereo cameras and a global navigation satellite system (GNSS) receiver. In the first approach, the GNSS signals are used as excentric observations for the projection centres of the cameras in a bundle adjustment, whereas the second approach uses markers on the front vehicle as dynamic ground control points (GCPs). As the platforms are moving and data acquisition is not synchronised, we use time dependent platform poses. These time dependent poses are represented by trajectories consisting of multiple 6 Degree of Freedom (DoF) anchor points between which linear interpolation takes place. In order to investigate the developed approach experimentally, in particular the potential of dynamic GCPs, we captured data using two platforms driving on a public road at normal speed. As a baseline, we determine the localisation parameters of one platform using only data of that platform. We then compute a solution based on image and GNSS data from both platforms. In a third scenario, the front platform is used as a dynamic GCP which can be related to the trailing platform by markers observed in the images acquired by the latter. We show that both cooperative approaches lead to significant improvements in the precision of the poses of the anchor points after bundle adjustment compared to the baseline. The improvement achieved due to the inclusion of dynamic GCPs is somewhat smaller than the one due to relating the platforms by tie points. Finally, we show that for an individual vehicle, the use of dynamic GCPs can compensate for the lack of GNSS data.


Author(s):  
S. Aghayari ◽  
M. Saadatseresht ◽  
M. Omidalizarandi ◽  
I. Neumann

A novel calibration process of RICOH-THETA, full-view fisheye camera, is proposed which has numerous applications as a low cost sensor in different disciplines such as photogrammetry, robotic and machine vision and so on. Ricoh Company developed this camera in 2014 that consists of two lenses and is able to capture the whole surrounding environment in one shot. In this research, each lens is calibrated separately and interior/relative orientation parameters (IOPs and ROPs) of the camera are determined on the basis of designed calibration network on the central and side images captured by the aforementioned lenses. Accordingly, designed calibration network is considered as a free distortion grid and applied to the measured control points in the image space as correction terms by means of bilinear interpolation. By performing corresponding corrections, image coordinates are transformed to the unit sphere as an intermediate space between object space and image space in the form of spherical coordinates. Afterwards, IOPs and EOPs of each lens are determined separately through statistical bundle adjustment procedure based on collinearity condition equations. Subsequently, ROPs of two lenses is computed from both EOPs. Our experiments show that by applying 3*3 free distortion grid, image measurements residuals diminish from 1.5 to 0.25 degrees on aforementioned unit sphere.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2196 ◽  
Author(s):  
Priyanka Das ◽  
Lorenzo Ortega ◽  
Jordi Vilà-Valls ◽  
François Vincent ◽  
Eric Chaumette ◽  
...  

This contribution analyzes the fundamental performance limits of traditional two-step Global Navigation Satellite System (GNSS) receiver architectures, which are directly linked to the achievable time-delay estimation performance. In turn, this is related to the GNSS baseband signal resolution, i.e., bandwidth, modulation, autocorrelation function, and the receiver sampling rate. To provide a comprehensive analysis of standard point positioning techniques, we consider the different GPS and Galileo signals available, as well as the signal combinations arising in the so-called GNSS meta-signal paradigm. The goal is to determine: (i) the ultimate achievable performance of GNSS code-based positioning systems; and (ii) whether we can obtain a GNSS code-only precise positioning solution and under which conditions. In this article, we provide clear answers to such fundamental questions, leveraging on the analysis of the Cramér–Rao bound (CRB) and the corresponding Maximum Likelihood Estimator (MLE). To determine such performance limits, we assume no external ionospheric, tropospheric, orbital, clock, or multipath-induced errors. The time-delay CRB and the corresponding MLE are obtained for the GPS L1 C/A, L1C, and L5 signals; the Galileo E1 OS, E6B, E5b-I, and E5 signals; and the Galileo E5b-E6 and E5a-E6 meta-signals. The results show that AltBOC-type signals (Galileo E5 and meta-signals) can be used for code-based precise positioning, being a promising real-time alternative to carrier phase-based techniques.


2021 ◽  
Vol 13 (21) ◽  
pp. 4222
Author(s):  
Wei Huang ◽  
San Jiang ◽  
Wanshou Jiang

Camera self-calibration determines the precision and robustness of AT (aerial triangulation) for UAV (unmanned aerial vehicle) images. The UAV images collected from long transmission line corridors are critical configurations, which may lead to the “bowl effect” with camera self-calibration. To solve such problems, traditional methods rely on more than three GCPs (ground control points), while this study designs a new self-calibration method with only one GCP. First, existing camera distortion models are grouped into two categories, i.e., physical and mathematical models, and their mathematical formulas are exploited in detail. Second, within an incremental SfM (Structure from Motion) framework, a camera self-calibration method is designed, which combines the strategies for initializing camera distortion parameters and fusing high-precision GNSS (Global Navigation Satellite System) observations. The former is achieved by using an iterative optimization algorithm that progressively optimizes camera parameters; the latter is implemented through inequality constrained BA (bundle adjustment). Finally, by using four UAV datasets collected from two sites with two data acquisition modes, the proposed algorithm is comprehensively analyzed and verified, and the experimental results demonstrate that the proposed method can dramatically alleviate the “bowl effect” of self-calibration for weakly structured long corridor UAV images, and the horizontal and vertical accuracy can reach 0.04 m and 0.05 m, respectively, when using one GCP. In addition, compared with open-source and commercial software, the proposed method achieves competitive or better performance.


2018 ◽  
Vol 940 (10) ◽  
pp. 2-6
Author(s):  
J.A. Younes ◽  
M.G. Mustafin

The issue of calculating the plane rectangular coordinates using the data obtained by the satellite observations during the creation of the geodetic networks is discussed in the article. The peculiarity of these works is in conversion of the coordinates into the Mercator projection, while the plane coordinate system on the base of Gauss-Kruger projection is used in Russia. When using the technology of global navigation satellite system, this task is relevant for any point (area) of the Earth due to a fundamentally different approach in determining the coordinates. The fact is that satellite determinations are much more precise than the ground coordination methods (triangulation and others). In addition, the conversion to the zonal coordinate system is associated with errors; the value at present can prove to be completely critical. The expediency of using the Mercator projection in the topographic and geodetic works production at low latitudes is shown numerically on the basis of model calculations. To convert the coordinates from the geocentric system with the Mercator projection, a programming algorithm which is widely used in Russia was chosen. For its application under low-latitude conditions, the modification of known formulas to be used in Saudi Arabia is implemented.


2021 ◽  
Vol 13 (14) ◽  
pp. 8054
Author(s):  
Artur Janowski ◽  
Rafał Kaźmierczak ◽  
Cezary Kowalczyk ◽  
Jakub Szulwic

Knowing the exact number of fruits and trees helps farmers to make better decisions in their orchard production management. The current practice of crop estimation practice often involves manual counting of fruits (before harvesting), which is an extremely time-consuming and costly process. Additionally, this is not practicable for large orchards. Thanks to the changes that have taken place in recent years in the field of image analysis methods and computational performance, it is possible to create solutions for automatic fruit counting based on registered digital images. The pilot study aims to confirm the state of knowledge in the use of three methods (You Only Look Once—YOLO, Viola–Jones—a method based on the synergy of morphological operations of digital imagesand Hough transformation) of image recognition for apple detecting and counting. The study compared the results of three image analysis methods that can be used for counting apple fruits. They were validated, and their results allowed the recommendation of a method based on the YOLO algorithm for the proposed solution. It was based on the use of mass accessible devices (smartphones equipped with a camera with the required accuracy of image acquisition and accurate Global Navigation Satellite System (GNSS) positioning) for orchard owners to count growing apples. In our pilot study, three methods of counting apples were tested to create an automatic system for estimating apple yields in orchards. The test orchard is located at the University of Warmia and Mazury in Olsztyn. The tests were carried out on four trees located in different parts of the orchard. For the tests used, the dataset contained 1102 apple images and 3800 background images without fruits.


2021 ◽  
pp. 1-16
Author(s):  
Hong Hu ◽  
Xuefeng Xie ◽  
Jingxiang Gao ◽  
Shuanggen Jin ◽  
Peng Jiang

Abstract Stochastic models are essential for precise navigation and positioning of the global navigation satellite system (GNSS). A stochastic model can influence the resolution of ambiguity, which is a key step in GNSS positioning. Most of the existing multi-GNSS stochastic models are based on the GPS empirical model, while differences in the precision of observations among different systems are not considered. In this paper, three refined stochastic models, namely the variance components between systems (RSM1), the variances of different types of observations (RSM2) and the variances of observations for each satellite (RSM3) are proposed based on the least-squares variance component estimation (LS-VCE). Zero-baseline and short-baseline GNSS experimental data were used to verify the proposed three refined stochastic models. The results show that, compared with the traditional elevation-dependent model (EDM), though the proposed models do not significantly improve the ambiguity resolution success rate, the positioning precision of the three proposed models has been improved. RSM3, which is more realistic for the data itself, performs the best, and the precision at elevation mask angles 20°, 30°, 40°, 50° can be improved by 4⋅6%, 7⋅6%, 13⋅2%, 73⋅0% for L1-B1-E1 and 1⋅1%, 4⋅8%, 16⋅3%, 64⋅5% for L2-B2-E5a, respectively.


Sign in / Sign up

Export Citation Format

Share Document